Acta Optica Sinica, Volume. 43, Issue 16, 1623010(2023)

The Implementation and Application Progress of the Generalized Brewster Effect

Shuxiao Yue1,2, Zhe Zhang1,2, Fang Guan1,2,3、*, and Jian Zi1,2
Author Affiliations
  • 1Institute for Nanoelectric Devices and Quantum Computing, Fudan University, Shanghai 200438, China
  • 2State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, China
  • 3Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
  • show less
    References(62)

    [1] Brewster D. On the laws which regulate the polarization of light by reflection from transparent bodies[J]. Proceedings of the Royal Society, 2, 14-15(1815).

    [2] Smith D R, Padilla W J, Vier D C et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 84, 4184-4187(2000).

    [3] Pendry J B, Holden A J, Robbins D J et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084(1999).

    [4] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 292, 77-79(2001).

    [5] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 85, 3966-3969(2000).

    [6] Parazzoli C G, Greegor R B, Li K et al. Experimental verification and simulation of negative index of refraction using Snell’s law[J]. Physical Review Letters, 90, 107401(2003).

    [7] Veselago V G. Electrodynamics of substances with simultaneously negative and[J]. Uspekhi Fizicheskikh Nauk, 92, 517(1967).

    [8] Marqués R, Medina F, Rafii-El-Idrissi R. Role of bianisotropy in negative permeability and left-handed metamaterials[J]. Physical Review B, 65, 144440(2002).

    [9] Marqués R, Martel J, Mesa F et al. Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides[J]. Physical Review Letters, 89, 183901(2002).

    [10] Shalaev V M. Optical negative-index metamaterials[J]. Nature Photonics, 1, 41-48(2007).

    [11] Fu C J, Zhang Z M, First P N. Brewster angle with a negative-index material[J]. Applied Optics, 44, 3716-3724(2005).

    [12] Tanaka T, Ishikawa A, Kawata S. Unattenuated light transmission through the interface between two materials with different indices of refraction using magnetic metamaterials[J]. Physical Review B, 73, 125423(2006).

    [13] Tamayama Y, Nakanishi T, Sugiyama K et al. Observation of Brewster’s effect for transverse-electric electromagnetic waves in metamaterials: experiment and theory[J]. Physical Review B, 73, 193104(2006).

    [14] Watanabe R, Iwanaga M, Ishihara T. S-polarization Brewster’s angle of stratified metal-dielectric metamaterial in optical regime[J]. Physica Status Solidi (b), 245, 2696-2701(2008).

    [15] Lin X A, Shen Y C, Kaminer I et al. Transverse-electric Brewster effect enabled by nonmagnetic two-dimensional materials[J]. Physical Review A, 94, 023836(2016).

    [16] Mahlein H F. Generalized Brewster-angle conditions for quarter-wave multilayers at non-normal incidence[J]. Journal of the Optical Society of America, 64, 647-653(1974).

    [17] Heading J. Generalized investigations into the Brewster angle[J]. Optica Acta: International Journal of Optics, 33, 755-770(1986).

    [18] Paniagua-Domínguez R, Yu Y F, Miroshnichenko A E et al. Generalized Brewster effect in dielectric metasurfaces[J]. Nature Communications, 7, 10362(2016).

    [19] Sreekanth K V, ElKabbash M, Medwal R et al. Generalized Brewster angle effect in thin-film optical absorbers and its application for graphene hydrogen sensing[J]. ACS Photonics, 6, 1610-1617(2019).

    [20] Yin S X, Qi J R. Metagrating-enabled Brewster’s angle for arbitrary polarized electromagnetic waves and its manipulation[J]. Optics Express, 27, 18113-18122(2019).

    [21] Shu W, Ren Z, Luo H et al. Brewster angle for anisotropic materials from the extinction theorem[J]. Applied Physics A, 87, 297-303(2007).

    [22] Tamayama Y. Brewster effect in metafilms composed of bi-anisotropic split-ring resonators[J]. Optics Letters, 40, 1382-1385(2015).

    [23] Glybovski S B, Tretyakov S A, Belov P A et al. Metasurfaces: from microwaves to visible[J]. Physics Reports, 634, 1-72(2016).

    [24] Kupriianov A S, Xu Y, Sayanskiy A et al. Metasurface engineering through bound states in the continuum[J]. Physical Review Applied, 12, 014024(2019).

    [25] Li H, Ye D X, Shen F Z et al. Reconfigurable diffractive antenna based on switchable electrically induced transparency[J]. IEEE Transactions on Microwave Theory and Techniques, 63, 925-936(2015).

    [26] Kang M, Feng T H, Wang H T et al. Wave front engineering from an array of thin aperture antennas[J]. Optics Express, 20, 15882-15890(2012).

    [27] Ye D X, Wang Z Y, Xu K W et al. Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption[J]. Physical Review Letters, 111, 187402(2013).

    [28] Wang C, Zhu Z B, Cui W Z et al. All-angle Brewster effect observed on a terahertz metasurface[J]. Applied Physics Letters, 114, 191902(2019).

    [29] Lavigne G, Caloz C. Generalized Brewster effect using bianisotropic metasurfaces[J]. Optics Express, 29, 11361-11370(2021).

    [30] Chatterjee S, Shkondin E, Takayama O et al. Generalized Brewster effect in aluminum-doped ZnO nanopillars[J]. Proceedings of SPIE, 11345, 1134524(2020).

    [31] Zhang Z, Che Z Y, Liang X Y et al. Realizing generalized Brewster effect by generalized Kerker effect[J]. Physical Review Applied, 16, 054017(2021).

    [32] Zhang Z, Che Z Y, Chen J G et al. Realization of ultrawide-angle high transmission and its applications in 5G millimeter-wave communications[J]. Optics Express, 30, 14002-14018(2022).

    [33] Kerker M, Wang D S, Giles C L. Electromagnetic scattering by magnetic spheres[J]. Journal of the Optical Society of America, 73, 765-767(1983).

    [34] Liu W, Kivshar Y S. Generalized Kerker effects in nanophotonics and meta-optics[J]. Optics Express, 26, 13085-13105(2018).

    [35] Alaee R, Filter R, Lehr D et al. A generalized Kerker condition for highly directive nanoantennas[J]. Optics Letters, 40, 2645-2648(2015).

    [36] Shamkhi H K, Baryshnikova K V, Sayanskiy A et al. Transverse scattering and generalized kerker effects in all-dielectric Mie-resonant metaoptics[J]. Physical Review Letters, 122, 193905(2019).

    [37] Pors A, Andersen S K H, Bozhevolnyi S I. Unidirectional scattering by nanoparticles near substrates: generalized Kerker conditions[J]. Optics Express, 23, 28808-28828(2015).

    [38] Pozar D M[M]. Microwave engineering(2011).

    [39] Kong J A[M]. Electromagnetic wave theory(1990).

    [40] Wheeler H. Simple relations derived fom a phased-array antenna made of an infinite current sheet[J]. IEEE Transactions on Antennas and Propagation, 13, 506-514(1965).

    [41] He Y C, Eleftheriades G V. A thin double-mesh metamaterial radome for wide-angle and broadband applications at millimeter-wave frequencies[J]. IEEE Transactions on Antennas and Propagation, 68, 2176-2185(2020).

    [42] Chen H, Chen H D, Xiu X et al. Transparent FSS on glass window for signal selection of 5G millimeter-wave communication[J]. IEEE Antennas and Wireless Propagation Letters, 20, 2319-2323(2021).

    [43] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 312, 1780-1782(2006).

    [44] Kamali S M, Arbabi E, Arbabi A et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, 7, 041056(2017).

    [45] Li D, Li T W, Li E P et al. A 2.5-D angularly stable frequency selective surface using via-based structure for 5G EMI shielding[J]. IEEE Transactions on Electromagnetic Compatibility, 60, 768-775(2018).

    [46] Yao Z Q, Luo J E, Lai Y. Photonic crystals with broadband, wide-angle, and polarization-insensitive transparency[J]. Optics Letters, 41, 5106-5109(2016).

    [47] Luo J, Yang Y T, Yao Z Q et al. Ultratransparent media and transformation optics with shifted spatial dispersions[J]. Physical Review Letters, 117, 223901(2016).

    [48] Rodríguez-Ulibarri P, Kuznetsov S A, Beruete M. Wide angle terahertz sensing with a cross-dipole frequency selective surface[J]. Applied Physics Letters, 108, 111104(2016).

    [49] Van Labeke D, Gérard D, Guizal B et al. An angle-independent frequency selective surface in the optical range[J]. Optics Express, 14, 11945-11951(2006).

    [50] Im K, Kang J H, Park Q H. Universal impedance matching and the perfect transmission of white light[J]. Nature Photonics, 12, 143-149(2018).

    [51] Braun K F. Electrical oscillations and wireless telegraphy[J]. Nobel Lecture, 11, 226-245(1909).

    [52] Brookner E. Phased array radars-past, present and future[C], 104-113(2003).

    [53] Akaishi A, Iguchi M, Hariu K et al. Ka-band active phased array antenna for WINDS satellite[C], 2397(2003).

    [54] Naqvi A H, Lim S. Review of recent phased arrays for millimeter-wave wireless communication[J]. Sensors, 18, 3194(2018).

    [55] Rabinovich V, Alexandrov N[M]. Antenna arrays and automotive applications(2012).

    [56] Balanis C A[M]. Antenna theory: analysis and design(2015).

    [57] Magill E, Wheeler H. Wide-angle impedance matching of a planar array antenna by a dielectric sheet[J]. IEEE Transactions on Antennas and Propagation, 14, 49-53(1966).

    [58] Sajuyigbe S, Ross M, Geren P et al. Wide angle impedance matching metamaterials for waveguide-fed phased-array antennas[J]. IET Microwaves, Antennas & Propagation, 4, 1063-1072(2010).

    [59] Cameron T R, Eleftheriades G V. Analysis and characterization of a wide-angle impedance matching metasurface for dipole phased arrays[J]. IEEE Transactions on Antennas and Propagation, 63, 3928-3938(2015).

    [60] Bianchi D, Genovesi S, Borgese M et al. Element-independent design of wide-angle impedance matching radomes by using the generalized scattering matrix approach[J]. IEEE Transactions on Antennas and Propagation, 66, 4708-4718(2018).

    [61] Jin F L, Ding X, Cheng Y F et al. Impedance matching design of a low-profile wide-angle scanning phased array[J]. IEEE Transactions on Antennas and Propagation, 67, 6401-6409(2019).

    [62] Wheeler H A. The radiation resistance of an antenna in an infinite array or waveguide[J]. Proceedings of the IRE, 36, 478-487(1948).

    Tools

    Get Citation

    Copy Citation Text

    Shuxiao Yue, Zhe Zhang, Fang Guan, Jian Zi. The Implementation and Application Progress of the Generalized Brewster Effect[J]. Acta Optica Sinica, 2023, 43(16): 1623010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Apr. 27, 2023

    Accepted: Jun. 20, 2023

    Published Online: Aug. 1, 2023

    The Author Email: Guan Fang (fguan@fudan.edu.cn)

    DOI:10.3788/AOS230892

    Topics