Journal of the Chinese Ceramic Society, Volume. 50, Issue 3, 575(2022)
Electrostrictive Effect of Lead-free Perovskite Ceramics
[1] [1] UCHINO K. Piezoelectric actuators and ultrasonic motors[M]. Springer Science & Business Media, 1996.
[2] [2] CROSS L, JANG S, NEWNHAM R, et al. Large electrostrictive effects in relaxor ferroelectrics[J]. Ferroelectrics, 1980, 23(1): 187-191.
[3] [3] UCHINO K, NOMURA S, CROSS L E, et al. Electrostrictive effect in perovskites and its transducer applications[J]. J Mater Sci, 1981, 16(3): 569-578.
[4] [4] LI F, JIN L, XU Z, et al. Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity[J]. Appl Phys Rev, 2014, 1(1): 011103.
[5] [5] ZHAO C, WU H, LI F, et al. Practical high piezoelectricity in barium titanate ceramics utilizing multiphase convergence with broad structural flexibility[J]. J Am Chem Soc, 2018, 140(45): 15252-15260.
[6] [6] PARK S E, SHROUT T R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals[J]. J Appl Phys, 1997, 82(4): 1804-1811.
[7] [7] LEUNG K, LIU S, KYONKA J. Large electrostrictive effect in Ba: PZT and its application[J]. Ferroelectrics, 1980, 27(1): 41-43.
[8] [8] KANG D H, LEE Y H, YOON K H. Phase transition, dielectric and electrostrictive behaviors in (1-x)PYN-xPMN[J]. J Mater Res, 1998, 13(4): 984-989.
[10] [10] JIN L, LUO W, JING R, et al. High dielectric permittivity and electrostrictive strain in a wide temperature range in relaxor ferroelectric (1-x)[Pb(Mg1/3Nb2/3)O3-PbTiO3]-xBa(Zn1/3Nb2/3)O3 solid solutions[J]. Ceram Int, 2019, 45(5): 5518-5524.
[11] [11] ZHAO C, HUANG Y, WU J. Multifunctional barium titanate ceramics via chemical modification tuning phase structure[J]. InfoMat, 2020, 2(6): 1163-1190.
[12] [12] ANG C, YU Z. High, purely electrostrictive strain in lead-free dielectrics[J]. Adv Mater, 2006, 18(1): 103-106.
[13] [13] LIU X, ZHAI J, SHEN B. Novel bismuth ferrite-based lead-free incipient piezoceramics with high electromechanical response[J]. J Mater Chem C, 2019, 7(17): 5122-5130.
[14] [14] HUANG Y, ZHAO C, YIN J, et al. Giant electrostrictive effect in lead-free barium titanate-based ceramics via A-site ion-pairs engineering[J]. J Mater Chem A, 2019, 7(29): 17366-17375.
[15] [15] ZUO R, QI H, FU J, et al. Giant electrostrictive effects of NaNbO3-BaTiO3 lead-free relaxor ferroelectrics[J]. Appl Phys Lett, 2016, 108(23): 232904.
[16] [16] ZHONG W, KING-SMITH R, VANDERBILT D. Giant LO-TO splittings in perovskite ferroelectrics[J]. Phys Rev Lett, 1994, 72(22): 3618.
[17] [17] JIN L, HUO R, GUO R, et al. Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe3+-doped 0.5Ba(Zr0.2Ti0.8)- O3-0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics[J]. ACS Appl Mater Inter, 2016, 8(45): 31109-31119.
[18] [18] LI T, LIU C, KE X, et al. High electrostrictive strain in lead-free relaxors near the morphotropic phase boundary[J]. Acta Mater, 2020, 182: 39-46.
[19] [19] WU B, ZHAO C, HUANG Y, et al. Superior electrostrictive effect in relaxor potassium sodium niobate based ferroelectrics[J]. ACS Appl Mater Inter, 2020, 12(22): 25050-25057.
[20] [20] ZHENG T, WU J. Mesoscale origin of dielectric relaxation with superior electrostrictive strain in bismuth ferrite-based ceramics[J]. Mater Horiz, 2020, 7(11): 3011-3020.
[21] [21] JANG S, UCHINO K, NOMURA S, et al. Electrostrictive behavior of lead magnesium niobate based ceramic dielectrics[J]. Ferroelectrics, 1980, 27(1): 31-34.
[22] [22] LIU X, XUE S, MA J, et al. Electric-field-induced local distortion and large electrostrictive effects in lead-free NBT-based relaxor ferroelectrics[J]. J Eur Ceram Soc, 2018, 38(14): 4631-4639.
[23] [23] LU X, HOU L, JIN L, et al. Origin of composition-insensitive electrostrictive coefficient and continuous decrease of domain wall density in (1-x)NaNbO3-xBaTiO3 lead-free ferroelectrics[J]. J Eur Ceram Soc, 2018, 38(9): 3127-3135.
[24] [24] HAO J, LI W, ZHAI J, et al. Progress in high-strain perovskite piezoelectric ceramics[J]. Mat Sci Eng R, 2019, 135: 1-57.
[25] [25] LI F, ZHANG S, DAMJANOVIC D, et al. Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics[J]. Adv Funct Mater, 2018, 28(37): 1801504.
[26] [26] YOSHIDA M, MORI S, YAMAMOTO N, et al. TEM observation of polar domains in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3[J]. Ferroelectrics, 1998, 217(1): 327-333.
[27] [27] ZHOU X, XUE G, LUO H, et al. Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics[J]. Progress Mater Sci, 2021, 100836.
[28] [28] ACOSTA M, NOVAK N, ROJAS V, et al. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives[J]. Appl Phys Rev, 2017, 4(4): 041305.
[29] [29] SHVARTSMAN V V, LUPASCU D C. Lead-free relaxor ferroelectrics[J]. J Am Ceram Soc, 2012, 95(1): 1-26.
[30] [30] KLEEMANN W. The relaxor enigma-charge disorder and random fields in ferroelectrics[J]. J Mater Sci, 2006, 41(1): 129-136.
[31] [31] LI F, JIN L, GUO R P, et al. High electrostrictive coefficient Q33 in lead-free Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3[J]. Appl Phys Lett, 2014, 105(23): 232903-232903.
[32] [32] JIN L, QIAO J, HOU L, et al. A strategy for obtaining high electrostrictive properties and its application in barium stannate titanate lead-free ferroelectrics[J]. Ceram Int, 2018, 44(17): 21816-21824.
[33] [33] SHI T, XIE L, GU L, et al. Why Sn doping significantly enhances the dielectric properties of Ba(Ti1-xSnx)O3[J]. Sci Rep, 2015, 5(1): 1-4.
[34] [34] LU X, WANG L, JIN L, et al. Ultra-low hysteresis electrostrictive strain with high thermal stability in Bi(Li0.5Nb0.5)O3-modified BaTiO3 lead-free ferroelectrics[J]. J Alloys Compd, 2018, 753: 558-565.
[35] [35] ZHANG L, LOU X, WANG D, et al. Glass-glass transitions by means of an acceptor-donor percolating electric-dipole network[J]. Phys Rev Appl, 2017, 8(5): 054018.
[36] [36] HE L, WANG D, XU M, et al. Large electrostrain with nearly-vanished hysteresis in eco-friendly perovskites by building coexistent glasses near quadruple point[J]. Nano Energy, 2021, 106519.
[37] [37] VIOLA G, TIAN Y, YU C, et al. Electric field-induced transformations in bismuth sodium titanate-based materials[J]. Prog Mater Sci, 2021, 122: 100837.
[38] [38] YIN J, LIU G, ZHAO C, et al. Perovskite Na0.5Bi0.5TiO3: a potential family of peculiar lead-free electrostrictors[J]. J Mater Chem A, 2019, 7(22): 13658-13670.
[39] [39] DENG A, WU J. Optimized strain properties with small hysteresis in BNT-based ceramics with ergodic relaxor state[J]. J Eur Ceram Soc, 2021, 41(10): 5147-5154.
[40] [40] WU J, FAN Z, XIAO D, et al. Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures[J]. Prog Mater Sci, 2016, 84: 335-402.
[41] [41] ROJAC T, KOSEC M, DAMJANOVIC D. Large electric-field induced strain in BiFeO3 ceramics[J]. J Am Ceram Soc, 2011, 94(12): 4108-4111.
[42] [42] WANG T H, TU C S, DING Y, et al. Phase transition and ferroelectric properties of xBiFeO3-(1-x)BaTiO3 ceramics[J]. Curr Appl Phys, 2011, 11(3): S240-S243.
[43] [43] MISHRA S, CHOUDHURY N, CHAPLOT S, et al. Competing antiferroelectric and ferroelectric interactions in NaNbO3: Neutron diffraction and theoretical studies[J]. Phys Rev B, 2007, 76(2): 024110.
[44] [44] AYDI A, KHEMAKHEM H, BOUDAYA C, et al. New ferroelectric and relaxor ceramics in the mixed oxide system NaNbO3-BaSnO3[J]. Solid State Sci, 2004, 6(4): 333-337.
[45] [45] XU H, NAVROTSKY A, SU Y, et al. Perovskite solid solutions along the NaNbO3-SrTiO3 join: phase transitions, formation enthalpies, and implications for general perovskite energetics[J]. Chem Mater, 2005, 17(7): 1880-1886.
[46] [46] WANG T, JIN L, LI C, et al. Relaxor ferroelectric BaTiO3- Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application[J]. J Am Ceram Soc, 2015, 98(2): 559-566.
[47] [47] XIE A, ZUO R, QIAO Z, et al. NaNbO3-(Bi0.5Li0.5)TiO3 lead-free relaxor ferroelectric capacitors with superior energy-storage performances via multiple synergistic design[J]. Adv Energy Mater, 2021, 11(28): 2101378.
[48] [48] ZUO R Z, QI H, FU J, et al. Multiscale identification of local tetragonal distortion in NaNbO3-BaTiO3 weak relaxor ferroelectrics by Raman, synchrotron X-ray diffraction, and absorption spectra[J]. Appl Phys Lett, 2017, 111(13): 132901.
[49] [49] QI H, ZUO R, FU J, et al. Thermally stable electrostrains of morphotropic 0.875NaNbO3-0.1BaTiO3-0.025CaZrO3 lead-free piezoelectric ceramics[J]. Appl Phys Lett, 2017, 110(11): 032907.
[50] [50] EGERTON L, DILLON D M. Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate[J]. J Am Ceram Soc, 1959, 42(9): 438-442.
[51] [51] TAO H, WU H, LIU Y, et al. Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence[J]. J Am Chem Soc, 2019, 141(35): 13987-13994.
[54] [54] LI F, ZHANG S, XU Z, et al. Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of domain engineered (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals[J]. J Appl Phys, 2010, 108(3): 034106.
[55] [55] SETTER N, CROSS L. The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics[J]. J Appl Phys, 1980, 51(8): 4356-4360.
[56] [56] SETTER N, CROSS L. The contribution of structural disorder to diffuse phase transitions in ferroelectrics[J]. J Mater Sci, 1980, 15(10): 2478-2482.
[58] [58] LU S G, ROZIC B, ZHANG Q M, et al. Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect[J]. Appl Phys Lett, 2010, 97(16): 162904.
[59] [59] LU S G, XIONG H, WEI A, et al. Electrocaloric and electrostrictive effect of polar P(VDF-TrFE-CFE) terpolymers[J]. J Ad Dielec, 2013, 3(2): 1350015.
[60] [60] LI J, ZHAO X, XU Z, et al. Electrocaloric effect in lead-free relaxor (1-x)(Sr0.7Bi0.2)TiO3-x(Na0.5Bi0.5)TiO3 material system[J]. Mater Lett, 2017, 187: 68-71.
Get Citation
Copy Citation Text
HUANG Yanli, ZHAO Chunlin, WU Jiagang. Electrostrictive Effect of Lead-free Perovskite Ceramics[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 575
Special Issue:
Received: Aug. 30, 2021
Accepted: --
Published Online: Nov. 11, 2022
The Author Email: Yanli HUANG (yanlihuangylh@163.com)