Acta Photonica Sinica, Volume. 48, Issue 10, 1001001(2019)
Parameter Design and Performance Analysis of Bistatic Helium Lidar System
[1] [1] CHEN G, ZHAO Z, ZHU G, et al. The Wuhan ionospheric sounding systems[J]. IEEE Geoscience & Remote Sensing Letters, 2009, 6(4): 748-751.
[2] [2] CHU X, PAPEN G, PAN W, et al. Fe Boltzmann temperature lidar: design, error analysis, and first results from the North and South Poles[J]. Applied Optics, 2002, 41(21): 4400-4410.
[3] [3] ZAHN U V, HOFFNER J. Mesopause temperature profiling by potassium lidar[J]. Geophysical Research Letters, 1996, 23(2): 141-144.
[4] [4] GARDNER C S. Performance capabilities of middle-atmosphere temperature lidars: comparison of Na, Fe, K, Ca, Ca+, and Rayleigh systems[J]. Applied Optics, 2004, 43(25): 4941-4956.
[5] [5] NOTO J, KERR R B, SHEA E M, et al. Evidence for recombination as a significant source of metastable helium[J]. Journal of Geophysical Research Atmospheres, 1998, 103(A6): 11595-11603.
[6] [6] TINSLEY B A, CHRISTENSEN A B. Twilight He 10830 calculations and observations [J]. Journal of Geophysical Research, 1976, 81(7): 1253-1263.
[7] [7] CAI Yun-yun, SUN Dong-song, XUE Xiang-hui, et al. Design and analysis of lidar system for measurement of thermospheric metastable helium[J]. Chinese Journal of Lasers, 2017, 44(9): 0910001.
[8] [8] BISHOP J, LINKR. Metastable He 1083.0 nm intensities in the twilight: a reconsideration[J]. Geophysical Research Letters, 1993, 20(11): 1027-1030.
[9] [9] GERRARD A J, KANE T J, MEISEL D, et al. Investigation of a resonance lidar for measurement of thermospheric metastable helium[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59(16): 2023-2035.
[10] [10] WALDROP L S, KERR R B, GONZALEZ S A, et al. Generation of metastable helium and the 1083.0 nm emission in the upper thermosphere[J]. Journal of Geophysical Research Space Physics, 2005, 110(A8): 8304.1-8304.12.
[11] [11] CARLSON C G, DRAGIC P D, PRICE R K, et al. A narrow linewidth Yb fiber-amplified-based upper atmospheric Doppler temperature lidar[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 451-461.
[12] [12] MANGOGNIAA D. Helium resonance fluorescence lidar[D]. The University of Illinois, 2015.
[13] [13] HODGMAN S S, DALL R G, BYRON L J. Metastable helium: a new determination of the longest atomic excited-state lifetime[J]. Physical Review Letters, 2009, 103(5): 053002.
[14] [14] HE Jian, ZHANG Qing-guo. Study of a lidar for measurement of thermospheric He I 1 083 nm for Lorentzian profile[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(18): 5406-5408.
[15] [15] CORENO M, PRINCE K C, RICHTER R, et al. Branching ratios in the radiative decay of helium doubly excited states[J]. Physical Review Letters, 2005, 72(5): 052512.
[16] [16] MICKAT S, SCHARTNER K H, KAMMER S, et al. Absolute cross sections and branching ratios for the radiative decay of doubly excited helium determined by photon-induced fluorescence spectroscopy[J]. Journal of Physics B Atomic Molecular and Optical Physics, 2005, 38(15): 2613-2628.
Get Citation
Copy Citation Text
PAN Ting-yu, SUN Dong-song, ZHAO Ruo-can, LAN Jia-xin, HAN Yu-li, CHEN Ting-di, XUE Xiang-hui, TANG Lei. Parameter Design and Performance Analysis of Bistatic Helium Lidar System[J]. Acta Photonica Sinica, 2019, 48(10): 1001001
Received: Jun. 11, 2019
Accepted: --
Published Online: Nov. 14, 2019
The Author Email: Ting-yu PAN (panting@mail.ustc.edu.cn)