Optics and Precision Engineering, Volume. 32, Issue 3, 381(2024)
Active damping control method for suspended gravity offloading system
[1] [1] 尤波, 高扬, 许家忠, 等. 悬吊漂浮物随动系统的等效滑模控制研究[J]. 控制工程, 2018, 25(11): 1959-1964. doi: 10.14107/j.cnki.kzgc.160288YOUB, GAOY, XUJ Z, et al. Study on equivalent sliding mode control of suspended-floater follow-up system[J]. Control Engineering of China, 2018, 25(11): 1959-1964.(in Chinese). doi: 10.14107/j.cnki.kzgc.160288
[2] [2] 高海波, 牛福亮, 刘振, 等. 悬吊式微低重力环境模拟技术研究现状与展望[J]. 航空学报, 2021, 42(1): 523911.GAOH B, NIUF L, LIUZ, et al. Suspended micro-low gravity environment simulation technology: status quo and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 523911.(in Chinese)
[3] [3] 徐志刚, 王昊, 王军义, 等. 空间机器人悬挂系统重力补偿研究[J]. 机械设计与制造, 2014(10): 149-152. doi: 10.3969/j.issn.1001-3997.2014.10.045XUZ G, WANGH, WANGJ Y, et al. The research of space robot suspension system gravity compensation[J]. Machinery Design & Manufacture, 2014(10): 149-152.(in Chinese). doi: 10.3969/j.issn.1001-3997.2014.10.045
[4] [4] 牛福亮, 高海波, 刘振, 等. 一种串联张紧式恒力矩机构设计及实验研究[J]. 机器人, 2016, 38(4): 475-485. doi: 10.13973/j.cnki.robot.2016.0475NIUF L, GAOH B, LIUZ, et al. Design and experimental research of a tandem tensioning constant-torque mechanism[J]. Robot, 2016, 38(4): 475-485.(in Chinese). doi: 10.13973/j.cnki.robot.2016.0475
[5] [5] 梁定坤, 陈轶珩, 孙宁, 等. 气动人工肌肉驱动的机器人控制方法研究现状概述[J]. 控制与决策, 2021, 36(1): 27-41. doi: 10.13195/j.kzyjc.2020.0793LIANGD K, CHENY H, SUNN, et al. Overview of control methods for pneumatic artificial muscle-actuated robots[J]. Control and Decision, 2021, 36(1): 27-41.(in Chinese). doi: 10.13195/j.kzyjc.2020.0793
[6] [6] 刘福才, 贾晓菁, 刘林, 等. 气动加载系统的建模及非线性自抗扰控制[J]. 控制与决策, 2017, 32(5): 906-912. doi: 10.13195/j.kzyjc.2016.0169LIUF C, JIAX J, LIUL, et al. Pneumatic loading system modeling and nonlinear active disturbance rejection control[J]. Control and Decision, 2017, 32(5): 906-912.(in Chinese). doi: 10.13195/j.kzyjc.2016.0169
[7] [7] 彭瀚旻, 丁庆军, 李华峰, 等. IPMC型柔顺手爪作动器的设计与性能测试[J]. 光学 精密工程, 2010, 18(4): 899-905.PENGH M, DINGQ J, LIH F, et al. Design and performance tests of IPMC flexible grippers[J]. Opt. Precision Eng., 2010, 18(4): 899-905.(in Chinese)
[8] M CHAVOSHIAN, M TAGHIZADEH, M MAZARE. Hybrid dynamic neural network and PID control of pneumatic artificial muscle using the PSO algorithm. International Journal of Automation and Computing, 17, 428-438(2020).
[9] M E SADIQ, A J HUMAIDI, S K KADHIM et al. Optimal sliding mode control of single arm PAM-actuated manipulator, 84-89(2021).
[10] M SCHWENZER, T BERGS et al. Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology, 117, 1327-1349(2021).
[11] A D’JORGE, A FERRAMOSCA, A H GONZÁLEZ. A robust gradient-based MPC for integrating real time optimizer (RTO) with control. Journal of Process Control, 54, 65-80(2017).
[12] A KELMAN, F BORRELLI. Bilinear model predictive control of a HVAC system using sequential quadratic programming. IFAC Proceedings Volumes, 44, 9869-9874(2011).
[13] W EDWARDS, G TANG, G MAMAKOUKAS et al. Automatic tuning for data-driven model predictive control, 7379-7385(2021).
[14] [14] 尹晓红, 杨灿, 阚君武, 等. 基于神经动力学的轮式移动机器人跟踪与稳定统一控制[J]. 光学 精密工程, 2014, 22(3): 670-678. doi: 10.3788/ope.20142203.0670YINX H, YANGC, KANJ W, et al. Unified control of tracking and stabilization for WMR based on bio-inspired neurodynamics[J]. Opt. Precision Eng., 2014, 22(3): 670-678.(in Chinese). doi: 10.3788/ope.20142203.0670
[15] [15] 魏宗恩, 邓永停, 乔延婷, 等. 基于高斯过程的参数辨识及永磁同步电机模型电流预测控制策略[J]. 光学 精密工程, 2023, 31(4): 479-490. doi: 10.37188/OPE.20233104.0479WEIZ E, DENGY T, QIAOY T, et al. Gaussian process-based parameter identification and model current predictive control strategy of PMSM[J]. Opt. Precision Eng., 2023, 31(4): 479-490.(in Chinese). doi: 10.37188/OPE.20233104.0479
[16] P M MARUSAK. Efficient model predictive control algorithm with fuzzy approximations of nonlinear models, 448-457(2009).
[17] E KELASIDI, G ANDRIKOPOULOS, G NIKOLAKOPOULOS et al. A survey on pneumatic muscle actuators modeling, 1263-1269(2011).
[18] J SAROSI, I BIRO, J NEMETH et al. Dynamic modeling of a pneumatic muscle actuator with two-direction motion. Mechanism and Machine Theory, 85, 25-34(2015).
[19] J NICODEMUS, J KNEIFL, J FEHR et al. Physics-informed neural networks-based model predictive control for multi-link manipulators. ArXiv e-Prints(2021).
[20] E SKOMSKI, S VASISHT, C WIGHT et al. Constrained block nonlinear neural dynamical models, 3993-4000(2021).
[21] [21] 范国伟, 常琳, 戴路, 等. 敏捷卫星姿态机动的非线性模型预测控制[J]. 光学 精密工程, 2015, 23(8): 2318-2327. doi: 10.3788/ope.20152308.2318FANG W, CHANGL, DAIL, et al. Nonlinear model predictive control of agile satellite attitude maneuver[J]. Opt. Precision Eng., 2015, 23(8): 2318-2327.(in Chinese). doi: 10.3788/ope.20152308.2318
[22] Y CAO, J HUANG. Neural-network-based nonlinear model predictive tracking control of a pneumatic muscle actuator-driven exoskeleton. IEEE/CAA Journal of Automatica Sinica, 7, 1478-1488(2020).
[23] J A E ANDERSSON, J GILLIS, G HORN et al. CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation, 11, 1-36(2019).
[24] J NUBERT, J KÖHLER, V BERENZ et al. Safe and fast tracking on a robot manipulator: robust MPC and neural network control. IEEE Robotics and Automation Letters, 5, 3050-3057(2020).
Get Citation
Copy Citation Text
Huixing YAN, Hongqian LU, Hang YIN, Xianlin HUANG, Tainian CHENG. Active damping control method for suspended gravity offloading system[J]. Optics and Precision Engineering, 2024, 32(3): 381
Category:
Received: May. 25, 2023
Accepted: --
Published Online: Apr. 2, 2024
The Author Email: LU Hongqian (luhongqian@hit.edu.cn)