Optics and Precision Engineering, Volume. 30, Issue 16, 1924(2022)
Research progress of light addressable potentiometric sensor with optimized structure
[1] A POGHOSSIAN, M J SCHÖNING. Recent progress in silicon-based biologically sensitive field-effect devices. Current Opinion in Electrochemistry, 29, 100811(2021).
[2] P BERGVELD. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Transactions on Bio-Medical Engineering, 17, 70-71(1970).
[3] J M ZENG, L KUANG, N MISCOURIDES et al. A 128 × 128 current-mode ultra-high frame rate ISFET array with in-pixel calibration for real-time ion imaging. IEEE Transactions on Biomedical Circuits and Systems, 14, 359-372(2020).
[4] S HONDA, M SHIOMI, T YAMAGUCHI et al. Detachable flexible ISFET-based pH sensor array with a flexible connector. Advanced Electronic Materials, 6, 2000583(2020).
[5] D G HAFEMAN, J W PARCE, H M MCCONNELL. Light-addressable potentiometric sensor for biochemical systems. Science, 240, 1182-1185(1988).
[6] K I MIYAMOTO, S SAKAKITA, T WAGNER et al. Application of chemical imaging sensor to
[7] B STEIN, M GEORGE, H E GAUB et al. Spatially resolved monitoring of cellular metabolic activity with a semiconductor-based biosensor. Biosensors and Bioelectronics, 18, 31-41(2003).
[8] T YOSHINOBU, K I MIYAMOTO, T WAGNER et al. Recent developments of chemical imaging sensor systems based on the principle of the light-addressable potentiometric sensor. Sensors and Actuators B: Chemical, 207, 926-932(2015).
[9] K I MIYAMOTO, H ICHIMURA, T WAGNER et al. Chemical imaging of the concentration profile of ion diffusion in a microfluidic channel. Sensors and Actuators B: Chemical, 189, 240-245(2013).
[10] J WANG, Y L TIAN, F M CHEN et al. Scanning electrochemical photometric sensors for label-free single-cell imaging and quantitative absorption analysis. Analytical Chemistry, 92, 9739-9744(2020).
[11] F WU, B ZHOU, J WANG et al. Photoelectrochemical imaging system for the mapping of cell surface charges. Analytical Chemistry, 91, 5896-5903(2019).
[12] [12] 12张志勇, 陈兴梧, 牛文成, 陈诚, 孙兴文. 光寻址电位传感器测量系统的研究[J]. 仪表技术与传感器, 2003(12): 34-36, 54. doi: 10.3969/j.issn.1002-1841.2003.12.014ZHANGZ Y, CHENX W, NIUW C, SUNX W, et al. Research of light addressable potentiometric sensors measure system[J]. Instrument Technique and Sensor, 2003(12): 34-36, 54.(in Chinese). doi: 10.3969/j.issn.1002-1841.2003.12.014
[13] T YOSHINOBU, H TANAKA et al. High-speed and high-precision chemical-imaging sensor. Sensors and Actuators A: Physical, 51, 231-235(1995).
[14] [14] 14韩泾鸿, 张虹, 顾丽波, 等. 微结构光寻址电位传感器阵列芯片的研制[J]. 微纳电子技术, 2003, 40(S1): 391-394. doi: 10.3969/j.issn.1671-4776.2003.07.116HANJ H, ZHANGH, GUL B, et al. Study and fabrication of microstructure array chip based on light addressable potentiometric sensors[J]. Micronanoelectronic Technology, 2003, 40(S1): 391-394.(in Chinese). doi: 10.3969/j.issn.1671-4776.2003.07.116
[15] Q T ZHANG, W PING, W J PARAK et al. A novel design of multi-light LAPS based on digital compensation of frequency domain. Sensors and Actuators B: Chemical, 73, 152-156(2001).
[16] [16] 16张高燕, 王平, 张钦涛. 基于数字补偿的多光源寻址并行检测电位图像传感器[J]. 计量学报, 2002(3): 182-185, 223.ZHANGG Y, WANGP, ZHANGQ T. Multi-light LAPS based on digital compensation and parallel detection[J]. Acta Metrologica Sinica, 2002(3): 182-185, 223.(in Chinese)
[17] T WAGNER, R MOLINA, T YOSHINOBU et al. Handheld multi-channel LAPS device as a transducer platform for possible biological and chemical multi-sensor applications. Electrochimica Acta, 53, 305-311(2007).
[18] K MIYAMOTO, Y KUWABARA, S KANOH et al. Chemical image scanner based on FDM-LAPS. Sensors and Actuators B: Chemical, 137, 533-538(2009).
[19] K I MIYAMOTO, A ITABASHI, T WAGNER et al. High-speed chemical imaging inside a microfluidic channel. Sensors and Actuators B: Chemical, 194, 521-527(2014).
[20] M J SCHÖNING, T WAGNER, C WANG et al. Development of a handheld 16 channel pen-type LAPS for electrochemical sensing. Sensors and Actuators B: Chemical, 108, 808-814(2005).
[21] T WAGNER, C F B WERNER, K I MIYAMOTO et al. A high-density multi-point LAPS set-up using a VCSEL array and FPGA control. Sensors and Actuators B: Chemical, 154, 124-128(2011).
[22] Y H LIN, K S HO et al. A novel light-addressable potentiometric sensors set-up with LCD projector as scanning light source, 972-975(2011).
[23] Y H LIN, C S LAI. Miniaturized amorphous-silicon based chemical imaging sensor system using a mini-projector as a simplified light-addressable scanning source. Sensors and Actuators B: Chemical, 190, 664-672(2014).
[24] Y H LIN, C S LAI. A simple and convenient set-up of light addressable potentiometric sensors (LAPS) for chemical imaging using a commercially available projector as a light source. International Journal of Electrochemical Science, 8, 7062-7074(2013).
[25] K I MIYAMOTO, K KANEKO, A MATSUO et al. Miniaturized chemical imaging sensor system using an OLED display panel. Sensors and Actuators B: Chemical, 170, 82-87(2012).
[26] T WAGNER, K I MIYAMOTO, M J SCHÖNING et al. Novel combination of digital light processing (DLP) and light-addressable potentiometric sensors (LAPS) for flexible chemical imaging. Procedia Engineering, 5, 520-523(2010).
[27] T WAGNER, C F WERNER, K I MIYAMOTO et al. Development and characterisation of a compact light-addressable potentiometric sensor (LAPS) based on the digital light processing (DLP) technology for flexible chemical imaging. Sensors and Actuators B: Chemical, 170, 34-39(2012).
[28] C F WERNER, T WAGNER, K I MIYAMOTO et al. High speed and high resolution chemical imaging based on a new type of OLED-LAPS set-up. Sensors and Actuators B: Chemical, 175, 118-122(2012).
[29] T C CHEN, C M YANG et al. A high-speed, flexible-scanning chemical imaging system using a light-addressable potentiometric sensor integrated with an analog micromirror. Sensors and Actuators B: Chemical, 198, 225-232(2014).
[30] C M YANG, T C CHEN et al. Analog micromirror-LAPS for chemical imaging and zoom-in application. Vacuum, 118, 161-166(2015).
[31] C M YANG, T H YEN, H L LIU et al. A real-time mirror-LAPS mini system for dynamic chemical imaging and cell acidification monitoring. Sensors and Actuators B: Chemical, 341, 130003(2021).
[32] T YOSHINOBU, K MIYAMOTO, C F WERNER et al. Light-addressable potentiometric sensors for quantitative spatial imaging of chemical species. Annual Review of Analytical Chemistry, 10, 225-246(2017).
[33] [33] 33韩泾鸿, 徐磊, 张虹, 等. 一种新型的光寻址电位传感器研究[J]. 电子学报, 2004, 32(8): 1385-1388. doi: 10.3321/j.issn:0372-2112.2004.08.037HANJ H, XUL, ZHANGH, et al. A new type of light addressable potentiometric sensors[J]. Acta Electronica Sinica, 2004, 32(8): 1385-1388.(in Chinese). doi: 10.3321/j.issn:0372-2112.2004.08.037
[34] [34] 34陈东, 刘诗斌, 殷世民, 等. 光寻址电位传感器的噪声分析与信号处理方法研究[J]. 光学 精密工程, 2016, 24(6): 1456-1464. doi: 10.3788/ope.20162406.1456CHEND, LIUS B, YINS M, et al. Research on noise analysis and signal processing method of light addressable potentiometric sensor[J]. Opt. Precision Eng., 2016, 24(6): 1456-1464.(in Chinese). doi: 10.3788/ope.20162406.1456
[35] [35] 35李学亮, 刘诗斌, 陈东, 等. 基于小波变换的光寻址电位传感器信号去噪研究[J]. 光电子·激光, 2014, 25(5): 835-839.LIX L, LIUS B, CHEND, et al. Denoising of LAPS signal based on wavelet transform[J]. Journal of Optoelectronics·Laser, 2014, 25(5): 835-839.(in Chinese)
[36] [36] 36陈东. 光寻址电位传感器关键技术研究[D]. 西安: 西北工业大学, 2018.CHEND. Research on Key Technology of Light Addressable Potentiometric Sensors[D]. Xi'an: Northwestern Polytechnical University, 2018. (in Chinese)
[37] T YOSHINOBU, H ECKEN, A POGHOSSIAN et al. Constant-current-mode LAPS (CLAPS) for the detectionof penicillin. Electroanalysis, 13, 733-736(2001).
[38] K I MIYAMOTO, S SAKAKITA, T YOSHINOBU. A novel data acquisition method for visualization of large pH changes by chemical imaging sensor. ISIJ International, 56, 492-494(2016).
[39] K I MIYAMOTO, Y SUGAWARA, S KANOH et al. Image correction method for the chemical imaging sensor. Sensors and Actuators B: Chemical, 144, 344-348(2010).
[40] F WU, I CAMPOS, D W ZHANG et al. Biological imaging using light-addressable potentiometric sensors and scanning photo-induced impedance microscopy. Proceedings Mathematical, Physical, and Engineering Sciences, 473, 20170130(2017).
[41] K I MIYAMOTO, T WAGNER, T YOSHINOBU et al. Phase-mode LAPS and its application to chemical imaging. Sensors and Actuators B: Chemical, 154, 28-32(2011).
[42] K I MIYAMOTO, T WAGNER, S MIMURA et al. Constant-phase-mode operation of the light-addressable potentiometric sensor. Sensors and Actuators B: Chemical, 154, 119-123(2011).
[43] S KRAUSE, H TALABANI, M XU et al. Scanning photo-induced impedance microscopy-an impedance based imaging technique. Electrochimica Acta, 47, 2143-2148(2002).
[44] S KRAUSE, W MORITZ, H TALABANI et al. Scanning photo-induced impedance microscopy-resolution studies and polymer characterization. Electrochimica Acta, 51, 1423-1430(2006).
[45] Y L ZHOU, L CHEN, S KRAUSE et al. Scanning photoinduced impedance microscopy using amorphous silicon photodiode structures. Analytical Chemistry, 79, 6208-6214(2007).
[46] Y L ZHOU, S H JIANG, S KRAUSE et al. Biosensor arrays based on the degradation of thin polymer films interrogated by scanning photoinduced impedance microscopy. Analytical Chemistry, 79, 8974-8978(2007).
[47] J WANG, I CAMPOS, F WU et al. The effect of gold nanoparticles on the impedance of microcapsules visualized by scanning photo-induced impedance microscopy. Electrochimica Acta, 208, 39-46(2016).
[48] D W ZHANG, F WU, J WANG et al. Image detection of yeast Saccharomyces cerevisiae by light-addressable potentiometric sensors (LAPS). Electrochemistry Communications, 72, 41-45(2016).
[49] F WU, D W ZHANG, J WANG et al. Copper contamination of self-assembled organic monolayer modified silicon surfaces following a “click” reaction characterized with LAPS and SPIM. Langmuir, 33, 3170-3177(2017).
[50] H YU, J WANG, Q J LIU et al. High spatial resolution impedance measurement of EIS sensors for light addressable cell adhesion monitoring. Biosensors and Bioelectronics, 26, 2822-2827(2011).
[51] L J BOUSSE, S MOSTARSHED, D HAFEMAN. Combined measurement of surface potential and zeta potential at insulator/electrolyte interfaces. Sensors and Actuators B: Chemical, 10, 67-71(1992).
[52] M ADAMI, M SARTORE, E BALDINI et al. New measuring principle for LAPS devices. Sensors and Actuators B: Chemical, 9, 25-31(1992).
[53] Y SASAKI, Y KANAI, H UCHIDA et al. Highly sensitive taste sensor with a new differential LAPS method. Sensors and Actuators B: Chemical, 25, 819-822(1995).
[54] A BMD ISMAIL, H SUGIHARA, T YOSHINOBU et al. A novel low-noise measurement principle for LAPS and its application to faster measurement of pH. Sensors and Actuators B: Chemical, 74, 112-116(2001).
[55] K I MIYAMOTO, M YOSHIDA, T SAKAI et al. Differential setup of light-addressable potentiometric sensor with an enzyme reactor in a flow channel. Japanese Journal of Applied Physics, 50(2011).
[56] S DANTISM, S TAKENAGA, T WAGNER et al. Differential imaging of the metabolism of bacteria and eukaryotic cells based on light-addressable potentiometric sensors. Electrochimica Acta, 246, 234-241(2017).
[57] S DANTISM, D RÖHLEN, T WAGNER et al. A LAPS-based differential sensor for parallelized metabolism monitoring of various bacteria. Sensors, 19, 4692(2019).
[58] S DANTISM, D RÖHLEN, T SELMER et al. Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system. Biosensors and Bioelectronics, 139, 111332(2019).
[59] M Y DOGHISH, F D HO. A comprehensive analytical model for metal-insulator-semiconductor (MIS) devices: a solar cell application. IEEE Transactions on Electron Devices, 40, 1446-1454(1993).
[60] M SARTORE, M ADAMI, C NICOLINI. Computer simulation and optimization of a light addressable potentiometric sensor. Biosensors and Bioelectronics, 7, 57-64(1992).
[61] T YOSHINOBU, H ECKEN, A POGHOSSIAN et al. Alternative sensor materials for light-addressable potentiometric sensors. Sensors and Actuators B: Chemical, 76, 388-392(2001).
[62] A SIMONIS, C RUGE, M MÜLLER-VEGGIAN et al. A long-term stable macroporous-type EIS structure for electrochemical sensor applications. Sensors and Actuators B: Chemical, 91, 21-25(2003).
[63] M J SCHÖNING, Ü MALKOC, M THUST et al. Novel electrochemical sensors with structured and porous semiconductor/insulator capacitors. Sensors and Actuators B: Chemical, 65, 288-290(2000).
[64] L CHEN, Y L ZHOU, S H JIANG et al. High resolution LAPS and SPIM. Electrochemistry Communications, 12, 758-760(2010).
[65] J WANG, Y L ZHOU, M WATKINSON et al. High-sensitivity light-addressable potentiometric sensors using silicon on sapphire functionalized with self-assembled organic monolayers. Sensors and Actuators B: Chemical, 209, 230-236(2015).
[66] J WANG, F WU, M WATKINSON et al. “click” patterning of self-assembled monolayers on hydrogen-terminated silicon surfaces and their characterization using light-addressable potentiometric sensors. Langmuir: the ACS Journal of Surfaces and Colloids, 31, 9646-9654(2015).
[67] M NAKAO, T YOSHINOBU, H IWASAKI. Improvement of spatial resolution of a laser-scanning pH-imaging sensor. Japanese Journal of Applied Physics, 33, L394-L397(1994).
[68] Y Y GUO, K I MIYAMOTO, T WAGNER et al. Device simulation of the light-addressable potentiometric sensor for the investigation of the spatial resolution. Sensors and Actuators B: Chemical, 204, 659-665(2014).
[69] M SARTORE, M ADAMI, C NICOLINI et al. Minority carrier diffusion length effects on light-addressable potentiometric sensor (LAPS) devices. Sensors and Actuators A: Physical, 32, 431-436(1992).
[70] J W PARCE, J C OWICKI, K M KERCSO et al. Detection of cell-affecting agents with a silicon biosensor. Science, 246, 243-247(1989).
[71] H M MCCONNELL, J C OWICKI, J W PARCE et al. The cytosensor microphysiometer: biological applications of silicon technology. Science, 257, 1906-1912(1992).
[72] M NAKAO, S INOUE, T YOSHINOBU et al. High-resolution pH imaging sensor for microscopic observation of microorganisms. Sensors and Actuators B: Chemical, 34, 234-239(1996).
[73] T C CHEN, W Y ZENG, Y H LIAO et al. High photocurrent and operation frequency for light-addressable potentiometric sensor by thinner Si substrate, 1-3(2014).
[74] W Y ZENG, C C CHEN, C M YANG et al. High photocurrent and high frequency response of light-addressable potentiometrie sensor with thin Si substrate and surface roughness, 1-3(2015).
[75] C M YANG, W Y ZENG, Y P CHEN et al. Surface modification for high photocurrent and pH sensitivity in a silicon-based light-addressable potentiometric sensor. IEEE Sensors Journal, 18, 2253-2259(2018).
[76] W Y ZENG, T C CHEN, H L LIU et al. Thin silicon light-addressable potentiometric sensor by Deep reactive-ion etching, 1540-1542(2017).
[77] Y J LIN, P Y LIN, Y P CHEN et al. A multi-well thin-Si LAPS and all-in-one readout system for ion activity monitor of epithelium cells, 2(2018).
[78] D CHEN, S B LIU, S M YIN et al. Light-addressable potentiometric sensor with the micro blind holes substrate. IET Science, 11, 57-62(2017).
[79] H A TRUONG, C F WERNER, K I MIYAMOTO et al. A partially etched structure of light-addressable potentiometric sensor for high-spatial-resolution and high-speed chemical imaging. Physica Status Solidi (a), 215, 1700964(2018).
[80] H A TRUONG, C F WERNER, K I MIYAMOTO et al. Multi-well sensor platform based on a partially etched structure of a light-addressable potentiometric sensor. Physica Status Solidi (a), 216, 1800764(2019).
[81] チューン,ホアンアン, チューン,ホアンアン. Development of Partially-thinned LAPS Structures and Their Applications to Chemical Imaging and Analysis of Multiple Samples. チューン,ホアンアン(2019).
[82] C M YANG, W Y ZENG, C H CHEN et al. Spatial resolution and 2D chemical image of light-addressable potentiometric sensor improved by inductively coupled-plasma reactive-ion etching. Sensors and Actuators B: Chemical, 258, 1295-1301(2018).
[83] W MORITZ, T YOSHINOBU, F FINGER et al. High resolution LAPS using amorphous silicon as the semiconductor material. Sensors and Actuators B: Chemical, 103, 436-441(2004).
[84] T YOSHINOBU, M SCHÖNING, F FINGER et al. Fabrication of thin-film LAPS with amorphous silicon. Sensors, 4, 163-169(2004).
[85] W MORITZ, I GERHARDT, D RODEN et al. Photocurrent measurements for laterally resolved interface characterization. Fresenius' Journal of Analytical Chemistry, 367, 329-333(2000).
[86] L B CHANG et al. GaN thin film based light addressable potentiometric sensor for pH sensing application. Applied Physics Express, 6(2013).
[87] C M YANG, C H CHEN, L B CHANG et al. IGZO thin-film light-addressable potentiometric sensor. IEEE Electron Device Letters, 37, 1481-1484(2016).
[88] C M YANG, Y C YANG, C H CHEN. Thin-film light-addressable potentiometric sensor with SnOx as a photosensitive semiconductor. Vacuum, 168, 108809(2019).
[89] B ZHOU, M J KAPPERS et al. InGaN as a substrate for AC photoelectrochemical imaging. Sensors (Basel, Switzerland), 19, 4386(2019).
[90] [90] 90徐磊, 韩泾鸿, 梁卫国, 等. LAPS控制和测试系统的设计和实现[J]. 仪器仪表学报, 2002, 23(S1): 161-163. doi: 10.3321/j.issn:0254-3087.2002.z1.073XUL, HANJ H, LIANGW G, et al. The design and realization of LAPS control and measure system[J]. Chinese Journal of Scientific Instrument, 2002, 23(S1): 161-163.(in Chinese). doi: 10.3321/j.issn:0254-3087.2002.z1.073
[91] A POGHOSSIAN, C F WERNER, V V BUNIATYAN et al. Towards addressability of light-addressable potentiometric sensors: Shunting effect of non-illuminated region and cross-talk. Sensors and Actuators B: Chemical, 244, 1071-1079(2017).
[92] K I MIYAMOTO, K HAYASHI, A SAKAMOTO et al. A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance. Sensors and Actuators B: Chemical, 248, 1006-1010(2017).
[93] Y ITO. High-spatial resolution LAPS. Sensors and Actuators B: Chemical, 52, 107-111(1998).
[94] Q T ZHANG. Theoretical analysis and design of submicron-LAPS. Sensors and Actuators B: Chemical, 105, 304-311(2005).
[95] J TAN, S B LIU, J Z LUO et al. Well-ordered polystyrene colloidal spheres for light addressable potentiometric sensor. Thin Solid Films, 716, 138417(2020).
[96] J TAN, S B LIU, J Z LUO et al. Honeycomb meshed working electrodes based on microsphere lithography for high-resolution chemical image sensor. Analytica Chimica Acta, 1178, 338798(2021).
[97] D W ZHANG, F WU, S KRAUSE. LAPS and SPIM imaging using ITO-coated glass as the substrate material. Analytical Chemistry, 89, 8129-8133(2017).
[98] J WANG, S KONG, F M CHEN et al. A bioelectronic taste sensor based on bioengineered Escherichia coli cells combined with ITO-constructed electrochemical sensors. Analytica Chimica Acta, 1079, 73-78(2019).
[99] D W ZHANG, N PAPAIOANNOU, N M DAVID et al. Photoelectrochemical response of carbon dots (CDs) derived from chitosan and their use in electrochemical imaging. Materials Horizons, 5, 423-428(2018).
[100] Y TU, N AHMAD, J BRISCOE et al. Light-addressable potentiometric sensors using ZnO nanorods as the sensor substrate for bioanalytical applications. Analytical Chemistry, 90, 8708-8715(2018).
[101] B ZHOU, M C ZHONG et al. Photoelectrochemical imaging system with high spatiotemporal resolution for visualizing dynamic cellular responses. Biosensors and Bioelectronics, 180, 113121(2021).
Get Citation
Copy Citation Text
Jie TAN, Shibin LIU, Jiezhang LUO, Yinghao CHEN, Yongqian Du. Research progress of light addressable potentiometric sensor with optimized structure[J]. Optics and Precision Engineering, 2022, 30(16): 1924
Category: Modern Applied Optics
Received: Sep. 29, 2021
Accepted: --
Published Online: Sep. 22, 2022
The Author Email: LIU Shibin (liushibin@ nwpu.edu.cn)