Optics and Precision Engineering, Volume. 24, Issue 9, 2302(2016)

Single image super-resolution reconstruction using support vector regression

YUAN Qi-ping... LIN Hai-jie*, CHEN Zhi-hong and YANG Xiao-ping |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(21)

    [3] [3] HE L Y, LIU J H, LI G, et al.. Fast image registration approach based on improved BRISK [J]. Infrared and Laser Engineering, 2014, 43(8): 2722-2727.(in Chinese)

    [5] [5] YANG J C, WANG Z W, LIN Z, et al..Coupled dictionary training for image super-resolution [J]. IEEE Transactions on Image Processing, 2012, 21(8): 3467-3478.

    [6] [6] REN C, HE X H, TENG Q Z, et al..Single image super-resolution using local geometric duality and non-local similarity [J]. IEEE Transactions on Image Processing, 2016, 25(5): 2168-2183.

    [8] [8] ZHANG K B, GAO X B, LI J, et al..Single image super-resolution using regularization of non-local steering kernel regression [J]. Signal Processing, 2016, 123: 53-63.

    [9] [9] LI J M, QU Y Y, LI C H, et al..Image super-resolution based on multi-kernel regression [J]. Multimedia Tools and Applications, 2016, 75: 4115-4128.

    [10] [10] NI K S, NGUYEN T Q.Image super-resolution using support vector regression [J].IEEE Transactions on Image Processing, 2007, 16(6): 1596-1610.

    [11] [11] YANG M C, WANG Y C F. A self-learning approach to single image super-resolution [J]. IEEE Transactions on Multimedia, 2013, 15(3): 498-508.

    [12] [12] DONG C, CHEN C L, HE K M, et al..Image super-resolution using deep convolutional networks [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307.

    [13] [13] LIANG Y D, WANG J J, ZHOU S P, et al..Incorporating image priors with deep convolutional neural networks for image super-resolution [J]. Neurocomputing, 2016, 194: 340-347.

    [14] [14] TIMOFTE R, DE S, VAN G L. A+: adjusted anchored neighborhood regression for fast super-resolution [C].Proceeding of the 12th Asian Conference on Computer Vision, 2014: 111-26.

    [15] [15] PELEG T, ELAD M. A statistical prediction model based on sparse representations for single image super-resolution [J]. IEEE Transactions on Image Processing, 2014, 23(6): 2569-2582.

    [16] [16] MENG W, JIN L X, LI G N, et al..Application of MTF in remote sensing image restoration [J]. Infrared and Laser Engineering, 2014, 43(5): 1690-1696.(in Chinese)

    [17] [17] ZHAO G Y, AHONEN T, MATAS J, et al.. Rotation-invariant image and video description with local binary pattern features [J]. IEEE Transactions on Image Processing, 2012, 21(4): 1465-1477.

    [18] [18] CHEN P H, LIN C J, SCHOLKOPF B. A tutorial on v-support vector machines [J].Applied Stochastic Models in Business and Industry, 2005, 21(2): 111-136.

    [19] [19] CHANG C C, LIN C J. LIBSVM: a library for support vector machines [J].ACM Transactions on Intelligent Systems and Technology, 2011, 2(3).

    [21] [21] KIM K I, KWON Y. Single-image super-resolution using sparse regression and natural image prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(6): 1127-1133.

    CLP Journals

    [1] LI Jian-hong, WU Ya-rong, L Ju-jian. Single image super-resolution reconstruction algorithm based on image self-similarity and multi-task Gaussian process regression[J]. Optics and Precision Engineering, 2018, 26(11): 2814

    [2] LI Yu, YANG Yun, WANG Dai-liang, ZHAO Quan-hua. Automatic enhancement of remote sensing images based on adaptive quantum genetic algorithm[J]. Optics and Precision Engineering, 2018, 26(11): 2838

    Tools

    Get Citation

    Copy Citation Text

    YUAN Qi-ping, LIN Hai-jie, CHEN Zhi-hong, YANG Xiao-ping. Single image super-resolution reconstruction using support vector regression[J]. Optics and Precision Engineering, 2016, 24(9): 2302

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 13, 2016

    Accepted: --

    Published Online: Nov. 14, 2016

    The Author Email: Hai-jie LIN (haijie_lin@126.com)

    DOI:10.3788/ope.20162409.0001

    Topics