Laser & Optoelectronics Progress, Volume. 60, Issue 16, 1600003(2023)

Research Progress of High-Speed and Wide-Tuned Frequency Swept Lasers for Optical Coherence Tomography Applications

Yuheng Xu1,2, Cheng Qiu1、*, Yongyi Chen1,3、**, Ye Wang1,4, Lei Liang1, Peng Jia1, Li Qin1, Yongqiang Ning1, and Lijun Wang1
Author Affiliations
  • 1State Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin, China
  • 2Daheng College, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Jlight Semiconductor Technology Co., Ltd., Changchun 130102, Jilin, China
  • 4School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • show less
    References(89)

    [1] Alonso-Caneiro D, Karnowski K, Kaluzny B J et al. Assessment of corneal dynamics with high-speed swept source optical coherence tomography combined with an air puff system[J]. Optics Express, 19, 14188-14199(2011).

    [2] Cellina M, Floridi C, Rosti C et al. MRI of acute optic neuritis (ON) at the first episode: can we predict the visual outcome and the development of multiple sclerosis (MS)?[J]. La Radiologia Medica, 124, 1296-1303(2019).

    [3] Carrasco-Zevallos O M, Viehland C, Keller B et al. Review of intraoperative optical coherence tomography: technology and applications[J]. Biomedical Optics Express, 8, 1607-1637(2017).

    [4] Melillo P, Rossi S, di Iorio V et al. Reproducibility of en-face optical coherence tomography imaging for macular atrophy area evaluation in juvenile macular degeneration[M]. Kyriacou E, Christofides S, Pattichis C S. XIV mediterranean conference on medical and biological engineering and computing 2016. IFMBE proceedings, 57, 250-253(2016).

    [5] Padnick-Silver L, Weinberg A B, Lafranco F P et al. Pilot study for the detection of early exudative age-related macular degeneration with optical coherence tomography[J]. Retina, 32, 1045-1056(2012).

    [6] Töteberg-Harms M, Sturm V, Knecht P B et al. Repeatability of nerve fiber layer thickness measurements in patients with glaucoma and without glaucoma using spectral-domain and time-domain OCT[J]. Graefe’s Archive for Clinical and Experimental Ophthalmology, 250, 279-287(2012).

    [7] Cennamo G, Montorio D, Velotti N et al. Optical coherence tomography angiography in pre-perimetric open-angle glaucoma[J]. Graefe’s Archive for Clinical and Experimental Ophthalmology, 255, 1787-1793(2017).

    [8] Spaide R F. Microvascular flow abnormalities associated with retinal vasculitis: a potential of mechanism of retinal injury[J]. Retina, 37, 1034-1042(2017).

    [9] Abucham-Neto J Z, Torricelli A A M, Lui A C F et al. Comparison between optical coherence tomography angiography and fluorescein angiography findings in retinal vasculitis[J]. International Journal of Retina and Vitreous, 4, 1-5(2018).

    [10] Bezerra H G, Attizzani G F, Sirbu V et al. Optical coherence tomography versus intravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention[J]. JACC: Cardiovascular Interventions, 6, 228-236(2013).

    [11] Yoshimura S, Kawasaki M, Hattori A et al. Demonstration of intraluminal thrombus in the carotid artery by optical coherence tomography: technical case report[J]. Neurosurgery, 67, onsE305(2010).

    [12] Jiang T M, Chen S B, Liang G Q et al. The contrast study on OCT and IVUS in the diagnosis of coronary heart diseases[J]. Tianjin Medical Journal, 35, 338-340(2007).

    [13] Gonzalo N, Serruys P W, Garcia-Garcia H M et al. Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries[J]. Revista Española De Cardiología, 62, 615-624(2009).

    [14] Toutouzas K, Chatzizisis Y S, Riga M et al. Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: comparative study to 3D IVUS and 3D QCA[J]. Atherosclerosis, 240, 510-519(2015).

    [15] Haak R, Ahrens M, Schneider H et al. Handheld OCT probe for intraoral diagnosis on teeth[J]. Proceedings of SPIE, 11073, 110730W(2019).

    [16] Shi B Y, Meng Z, Liu T G et al. Non-distorted imaging depth of optical coherence tomography system in human dental tissues[J]. Acta Optica Sinica, 34, 0217001(2014).

    [17] Marcauteanu C, Bradu A, Sinescu C et al. The advantages of a swept source optical coherence tomography system in the evaluation of occlusal disorders[J]. Proceedings of SPIE, 8925, 235-240(2014).

    [18] Hong C, Wang W, Zhong N S et al. Visualization of peripheral pulmonary artery red thrombi utilizing optical coherence tomography[J]. Korean Journal of Radiology, 14, 854-858(2013).

    [19] Sellam A, Glacet-Bernard A, Coscas F et al. Abnormal retinal artery perfusion and optical coherence tomography angiography[J]. Journal Francais D’Ophtalmologie, 40, 353-362(2017).

    [20] Cheng K, Du J F, Zhang X M et al. Expression and clinical significance of Oct-4 in stage ⅢB colon cancer and its correlation with CD45RO+ cell infiltration[J]. Chinese Journal of Microecology, 29, 199-201(2017).

    [21] Familiari L, Strangio G, Consolo P et al. Optical coherence tomography evaluation of ulcerative colitis: the patterns and the comparison with histology[J]. The American Journal of Gastroenterology, 101, 2833-2840(2006).

    [22] Ke S T, Chen M H, Zheng Z X et al. Super-resolution reconstruction of optical coherence tomography retinal images by generating adversarial network[J]. Chinese Journal of Lasers, 49, 1507203(2022).

    [23] Yuan K, Huo L. Multiple-scale inpainting convolutional neural network for retinal OCT image segmentation[J]. Chinese Journal of Lasers, 48, 1507004(2021).

    [24] Gaucher D, Saleh M, Sauer A et al. Spectral OCT analysis in Bietti crystalline dystrophy[J]. European Journal of Ophthalmology, 20, 612-614(2010).

    [25] van der Sijde J N, Karanasos A, van Ditzhuijzen N S et al. Safety of optical coherence tomography in daily practice: a comparison with intravascular ultrasound[J]. European Heart Journal-Cardiovascular Imaging, 18, 467-474(2016).

    [26] Takarada S, Imanishi T, Liu Y et al. Advantage of next-generation frequency-domain optical coherence tomography compared with conventional time-domain system in the assessment of coronary lesion[J]. Catheterization and Cardiovascular Interventions, 75, 202-206(2010).

    [27] Adler D C, Chen Y, Huber R et al. Three-dimensional endomicroscopy using optical coherence tomography[J]. Nature Photonics, 1, 709-716(2007).

    [28] Kolb J P, Pfeiffer T, Eibl M et al. High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates[J]. Biomedical Optics Express, 9, 120-130(2017).

    [29] Yun S H, Boudoux C, Tearney G J et al. High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter[J]. Optics Letters, 28, 1981-1983(2003).

    [30] Adler D C, Wieser W, Trepanier F et al. Coherence length extension of Fourier domain mode locked lasers[J]. Proceedings of SPIE, 8213, 82130O(2012).

    [31] Ishii H, Tanobe H, Kano F et al. Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers[J]. IEEE Journal of Quantum Electronics, 32, 433-441(1996).

    [32] Tokurakawa M, Daniel J M O, Chenug C S et al. Ultra-broadband wavelength-swept Tm-doped fiber laser using wavelength-combined gain stages[J]. Optics Express, 23, 471-476(2015).

    [33] Chen M H, Ding Z H, Tao Y H et al. Development of broad-band high-speed linearized swept laser source[J]. Chinese Journal of Lasers, 38, 0204001(2011).

    [34] Forster P, Romano C, Schneider J et al. High-power continuous-wave Tm3+∶Ho3+-codoped fiber laser operation from 2.1 µm to 2.2 µm[J]. Optics Letters, 47, 2542-2545(2022).

    [35] Wieser W, Biedermann B R, Klein T et al. Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second[J]. Optics Express, 18, 14685-14704(2010).

    [36] Jayaraman V, Cole G D, Robertson M et al. High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range[J]. Electronics Letters, 48, 867-869(2012).

    [37] Burgner C, Carter J, Donaldson A et al. Reliable widely tunable electrically pumped 1050 nm MEMS-VCSELs with amplifier in single butterfly co-package[J]. Proceedings of SPIE, 11228, 1122809(2020).

    [38] Reyes C, Piwonski T, Corbett B et al. Automated heterodyne method to characterize semiconductor based akinetic swept laser sources[J]. Proceedings of SPIE, 11078, 110780X(2019).

    [39] George B, Derickson D. High-speed concatenation of frequency ramps using sampled grating distributed Bragg reflector laser diode sources for OCT resolution enhancement[J]. Proceedings of SPIE, 7554, 75542O(2010).

    [40] Han L S, Liang S, Xu J J et al. Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs[C](2015).

    [41] Everson M, Duma V F, Dobre G. Optimisation of a polygon mirror-based spectral filter for swept source optical coherence tomography (SS-OCT)[J]. Proceedings of SPIE, 10591, 105910V(2018).

    [42] Yoo J K, Lim S D, Kim S K. Tunable single longitudinal mode Tm-doped fiber ring laser[C](2015).

    [43] Zeil P, Pasiskevicius V, Laurell F. Efficient spectral control and tuning of a high-power narrow-linewidth Yb-doped fiber laser using a transversely chirped volume Bragg grating[J]. Optics Express, 21, 4027-4035(2013).

    [44] Golubovic B, Bouma B E, Tearney G J et al. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser[J]. Optics Letters, 22, 1704-1706(1997).

    [45] Oh W Y, Yun S H, Tearney G J et al. Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers[J]. IEEE Photonics Technology Letters, 17, 678-680(2005).

    [46] McComb T S, Sudesh V, Shah L et al. Widely tunable (>100 nm) continuous-wave narrow-linewidth high-power thulium fiber laser[J]. Proceedings of SPIE, 7193, 71931I(2009).

    [47] Wang F Q, Meng Y F, Kelleher E et al. Stable gain-switched thulium fiber laser with 140-nm tuning range[J]. IEEE Photonics Technology Letters, 28, 1340-1343(2016).

    [48] Wang F, Shen D Y, Fan D Y et al. Spectral narrowing of cladding-pumped high-power Tm-doped fiber laser using a volume Bragg grating-pair[J]. Applied Physics Express, 3, 112701(2010).

    [49] McComb T S, Shah L, Sims R A et al. High power tunable thulium fiber laser with volume Bragg grating spectral control[J]. Proceedings of SPIE, 7580, 75801F(2010).

    [50] Duma M A, Duma V F. Theoretical approach on the linearity increase of scanning functions using supplemental mirrors[J]. Proceedings of SPIE, 11028, 1102817(2019).

    [51] Huber R, Taira K, Ko T H et al. High-speed, amplified, frequency swept laser at 20 kHz sweep rates for OCT imaging[C], 1657-1659(2005).

    [52] Huber R, Wojtkowski M, Taira K et al. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles[J]. Optics Express, 13, 3513-3528(2005).

    [53] Huber R, Wojtkowski M, Fujimoto J G. Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography[J]. Optics Express, 14, 3225-3237(2006).

    [54] Hsu K, Cormack R H. Tunable optical filters for dynamic networks[C], 776-781(2003).

    [55] Jeon M Y, Zhang J, Wang Q et al. High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs[J]. Optics Express, 16, 2547-2554(2008).

    [56] Schmidt M, Pfeiffer T, Grill C et al. Self-stabilization mechanism in ultra-stable Fourier domain mode-locked (FDML) lasers[J]. OSA Continuum, 3, 1589-1607(2020).

    [57] Xu J B, Zhu R, Wang X et al. Fourier domain mode locking laser for enhanced sweeping range based on dispersion-shifted fiber[C], JW2A.28(2012).

    [58] Huber R, Adler D C, Fujimoto J G. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s[J]. Optics Letters, 31, 2975-2977(2006).

    [59] Wieser W, Klein T, Adler D C et al. Extended coherence length megahertz FDML and its application for anterior segment imaging[J]. Biomedical Optics Express, 3, 2647-2657(2012).

    [60] Eigenwillig C M, Wieser W, Biedermann B R et al. Subharmonic Fourier domain mode locking[J]. Optics Letters, 34, 725-727(2009).

    [61] Tan B Y, McNabb R P, Zheng F H et al. Ultrawide field, distortion-corrected ocular shape estimation with MHz optical coherence tomography (OCT)[J]. Biomedical Optics Express, 12, 5770-5781(2021).

    [62] Miao Y S, Siadati M, Song J et al. Phase-corrected buffer averaging for enhanced OCT angiography using FDML laser[J]. Optics Letters, 46, 3833-3836(2021).

    [63] Mao Y X, Flueraru C, Chang S D et al. High-power 1300 nm FDML swept laser using polygon-based narrowband optical scanning filter[J]. Proceedings of SPIE, 7168, 716822(2009).

    [64] Huang D M, Shi Y H, Li F et al. Fourier domain mode locked laser and its applications[J]. Sensors, 22, 3145(2022).

    [65] Paul S, Gierl C, Cesar J et al. High speed surface micromachined MEMS tunable VCSEL for telecom wavelengths[C], AM3K.1(2015).

    [66] Chang-Hasnain C J, Harbison J P, Zah C E et al. Continuous wavelength tuning of two-electrode vertical cavity surface emitting lasers[J]. Electronics Letters, 27, 1002-1003(1991).

    [67] Vakhshoori D, Tayebati P, Lu C C et al. 2 mW CW singlemode operation of a tunable 1550 nm vertical cavity surface emitting laser with 50 nm tuning range[J]. Electronics Letters, 35, 900-901(1999).

    [68] Riemenschneider F, Maute M, Halbritter H et al. Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range[J]. IEEE Photonics Technology Letters, 16, 2212-2214(2004).

    [69] Shau R, Ortsiefer M, Zigldrum M et al. Low-threshold InGaAlAs/InP vertical-cavity surface-emitting laser diodes for 1.8 μm wavelength range[J]. Electronics Letters, 36, 1286-1287(2000).

    [70] Boehm G, Ortsiefer M, Shau R et al. InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0 μm[J]. Journal of Crystal Growth, 251, 748-753(2003).

    [71] Yano T, Saitou H, Kanbara N et al. Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 528-534(2009).

    [72] John D D, Burgner C B, Potsaid B et al. Wideband electrically-pumped 1050 nm MEMS-tunable VCSEL for ophthalmic imaging[J]. Journal of Lightwave Technology, 33, 3461-3468(2015).

    [73] Cook K T, Qiao P F, Chang-Hasnain C J. 1060 nm HCG MEMS-VCSEL with 73 nm tuning range[C], FTu4E.1(2017).

    [74] Gierl C, Gruendl T, Zogal K et al. Linewidth of surface micro-machined MEMS tunable VCSELs at 1.5 µm[C], CTu3N.2(2012).

    [75] Tingzon P M, Husay H A, Cabello N I et al. Indirect stress and air-cavity displacement measurement of MEMS tunable VCSELs via micro-Raman and micro-photoluminescence spectroscopy[J]. Semiconductor Science and Technology, 37, 035013(2022).

    [76] Ishii H, Kano F, Yoshikuni Y et al. Mode stabilization method for superstructure-grating DBR lasers[J]. Journal of Lightwave Technology, 16, 433-442(1998).

    [77] Okuda M, Onaka K. Tunability of distributed Bragg-reflector laser by modulating refractive index in corrugated waveguide[J]. Japanese Journal of Applied Physics, 16, 1501-1502(1977).

    [78] Jayaraman V, Mathur A, Coldren L A et al. Extended tuning range in sampled grating DBR lasers[J]. IEEE Photonics Technology Letters, 5, 489-491(1993).

    [79] Ishii H, Tohmori Y, Yoshikuni Y et al. Multiple-phase shift super structure grating DBR lasers for broad wavelength tuning[J]. IEEE Photonics Technology Letters, 5, 613-615(1993).

    [80] Todt R, Jacke T, Laroy R et al. Demonstration of vernier effect tuning in tunable twin-guide laser diodes[J]. IEE Proceedings-Optoelectronics, 152, 66-71(2005).

    [81] Shindo T, Fujiwara N, Ohiso Y et al. Quasi-continuous tuning of a 1.3-µm-wavelength superstructure grating distributed Bragg reflector laser by enhancing carrier-induced refractive index change[J]. Optics Express, 29, 232-243(2020).

    [82] Whitbread N D, Ward A J, Ponnampalam L et al. Digital wavelength-selected DBR laser[J]. Proceedings of SPIE, 4995, 81-93(2003).

    [83] Davies S C, Whitbread N D, Griffin R A et al. Narrow linewidth, high power, high operating temperature digital supermode distributed Bragg reflector laser[C], 690-692(2013).

    [84] Ward A J, Robbins D J, Reid D C J et al. Realization of phase grating comb reflectors and their application to widely tunable DBR lasers[J]. IEEE Photonics Technology Letters, 16, 2427-2429(2004).

    [85] He X Y, Huang D X, Yu Y L et al. Widely wavelength-selectable lasers with digital concatenated grating reflectors: proposal and simulation[J]. IEEE Photonics Technology Letters, 20, 1754-1756(2008).

    [86] Ye N, Liu Y, Wang B J et al. Monolithic integration of widely tunable sampled grating DBR laser with tilted semiconductor optical amplifier[J]. Proceedings of SPIE, 7987, 79870J(2011).

    [87] Choi D H, Yoshimura R, Ohbayashi K. Tuning of successively scanned two monolithic vernier-tuned lasers and selective data sampling in optical comb swept source optical coherence tomography[J]. Biomedical Optics Express, 4, 2962-2987(2013).

    [88] Zhou D B, Liang S, Zhao L J et al. High-speed directly modulated widely tunable two-section InGaAlAs DBR lasers[J]. Optics Express, 25, 2341-2346(2017).

    [89] Lee M H, Soares F, Baier M et al. 53 nm sampled grating tunable lasers from an InP generic foundry platform[J]. Proceedings of SPIE, 11356, 1135605(2020).

    Tools

    Get Citation

    Copy Citation Text

    Yuheng Xu, Cheng Qiu, Yongyi Chen, Ye Wang, Lei Liang, Peng Jia, Li Qin, Yongqiang Ning, Lijun Wang. Research Progress of High-Speed and Wide-Tuned Frequency Swept Lasers for Optical Coherence Tomography Applications[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1600003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Sep. 7, 2022

    Accepted: Nov. 22, 2022

    Published Online: Aug. 15, 2023

    The Author Email: Qiu Cheng (qiucheng@ciomp.ac.cn), Chen Yongyi (chenyy@ciomp.ac.cn)

    DOI:10.3788/LOP222487

    Topics