Infrared Technology, Volume. 46, Issue 4, 363(2024)
Research Progress in the Metal Oxide Heterojunction Photodetectors
[1] [1] YU X, Marks T J, Facchetti A. Metal oxides for optoelectronic applications[J]. Nature Materials, 2016, 15(4): 383-396.
[2] [2] YAO J Q, DENG H, LI M, et al. Improving processes on ZnO-based ultraviolet photodetector[J]. Advanced Materials Research, 2013, 685: 195-200.
[3] [3] Goldberg Y. Semiconductor near-ultraviolet photoelectronics[J]. Semiconductor Technology, 1999, 14(7): R41.
[4] [4] CHEN X, REN F, GU S, et al. Review of gallium-oxide-based solar -blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4): 381-415.
[5] [5] Kar A, Stroscio M A, Dutta M, et al. Meyyappan, Observation of ultraviolet emission and effect of surface states on the luminescence from tin oxide nanowires[J]. Applied Physics Letters, 2009, 94: 101905.
[6] [6] LI Lin , SUN Yuxuan, SUN Weifeng. First-principles study of electronic structure, magnetic and optical properties of laminated molybdenum oxides[J]. Acta PhysicaSinica, 2019, 68(5): 057101-3.
[7] [7] XIAO Z R, GUO G Y. Structural, electronic and magnetic properties of V2O5?x: An ab initio study[J]. The Journal of Chemical Physics, 2009, 130(21): 214704.
[8] [8] Hwang J D, Chen H Y, Chen Y H, et al. Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering[J]. Nanotechnology, 2018, 29(29): 295705.
[9] [9] OUYANG W, TENG F, HE J H, et al. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering[J]. Advanced Functional Materials, 2019, 29(9): 1807672.
[10] [10] GUO Tianchao, Construction and Performance Modulation of Metal Oxides/Silicon Heterojunction Photodetectors[D]. Beijing: China University of Petroleum, 2020: 16.
[11] [11] CHEN S, FU Y, Ishaq M, et al. Carrier recombination suppression and transport enhancement enable high-performance self-powered broadband Sb2Se3 photodetectors[J]. InfoMat, 2023, 5(4): e12400.
[12] [12] HWANG H Y, Iwasa Y, Kawasaki M, et al. Emergent phenomena at oxide interfaces[J]. Nature Materials, 2012, 11(2): 103-113.
[13] [13] Mannhart J, Schlom D G. Oxide interfaces—an opportunity for electronics[J]. Science, 2010, 327(5973): 1607-1611.
[14] [14] Kennedy D. Breakthrough of the year[J]. Science, 2007, 318(5858): 1833-1833.
[15] [15] Shim M, Guyot-Sionnest P. N-type colloidal semiconductor nanocrystals[J]. Nature, 2000, 407(6807): 981-983.
[16] [16] JI T, LIU Q, ZOU R, et al. Enhanced UV-visible light photodetectors with a TiO2/Si heterojunction using band engineering[J]. Journal of Materials Chemistry C, 2017, 5(48): 12848-12856.
[17] [17] CHEN X, XU Y, ZHOU D, et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase ?-Ga2O3/ZnO isotype heterostructures[J]. ACS Applied materials &Interfaces, 2017, 9(42): 36997-37005.
[18] [18] Serin N, Yildiz A, Alsa? A A, et al. Estimation of compensation ratio by identifying the presence of different hopping conduction mechanisms in SnO2 thin films[J]. Thin Solid Films, 2011, 519(7): 2302-2307.
[19] [19] Choi J M, Im S. Ultraviolet enhanced Si-photodetector using p-NiO films[J]. Applied Surface Science, 2005, 244(1-4): 435-438.
[20] [20] Almora O, Gerling L G, Voz C, et al. Superior performance of V2O5 as hole selective contact over other transition metal oxides in silicon heterojunction solar cells[J]. Solar Energy Materials and Solar Cells, 2017, 168: 221-226.
[21] [21] Bullock J, WAN Y, XU Z, et al. Stable dopant-free asymmetric heterocontact silicon solar cells with efficiencies above 20%[J]. ACS Energy Letters, 2018, 3(3): 508-513.
[22] [22] WU W, BAO J, JIA X, et al. Dopant-free back contact silicon heterojunction solar cells employing transition metal oxide emitters[J]. PhysicaStatus Solidi-Rapid Research Letters, 2016, 10(9): 662-667.
[23] [23] Costas A, Florica C, Preda N, et al. Radial heterojunction based on single ZnO-CuxO core-shell nanowire for photodetector applications[J]. Scientific Reports, 2019, 9(1): 5553.
[24] [24] Ahmed A A, Hashim M R, Qahtan T F, et al. Preparation and characteristics study of self-powered and fast response p-NiO/n-Si heterojunction photodetector[J]. Ceramics International, 2022, 48(14): 20078-20089.
[25] [25] HWANG J D, WU M S. Separate absorption and multiplication solarblind photodiodes based on p-NiO/MgO/n-ZnO heterostructure[J]. Nanotechnology, 2020, 32(1): 015503.
[26] [26] QIAN H, ZHANG X, MA Y, et al. Quasi-vertical ?-Ga2O3 solar-blind photodetectors grown on p-Si substrates with Al2O3 buffer layer by metalorganic chemical vapor deposition[J]. Vacuum, 2022, 200: 111019.
[27] [27] Mondal S, Halder S, Basak D. Ultrafast and ultrabroadband UV-vis-NIR photosensitivity under reverse and self-bias conditions by n+-ZnO/n-Si isotype heterojunction with >1 kHz bandwidth[J]. ACS Applied Electronic Materials, 2023, 5(2): 1212-1223.
[28] [28] Reddy Y A K, Ajitha B, Sreedhar A, et al. Enhanced UV photodetector performance in bi-layer TiO2/WO3 sputtered films[J]. Applied Surface Science, 2019, 494: 575-582.
[29] [29] ZU P, TANG Z K, WONG G K L, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature[J]. Solid State Communications, 1997, 103(8): 459-463.
[30] [30] Kawazoe H, Yanagi H, Ueda K, et al. Transparent p-type conducting oxides: design and fabrication of pn heterojunctions[J]. MRS Bulletin, 2000, 25(8): 28-36.
[31] [31] Park J W, Bogorin D F, Cen C, et al. Creation of a two-dimensional electron gas at an oxide interface on silicon[J]. Nature Communications, 2010, 1(1): 94.
[32] [32] HONG Q, CAO Y, XU J, et al. Self-powered ultrafast broadband photodetector based on p–n heterojunctions of CuO/Si nanowire array[J]. ACS Applied Materials &Interfaces, 2014, 6(23): 20887-20894.
[33] [33] ZOU H, LI X, PENG W, et al. Piezo-phototronic effect on selective electron or hole transport through depletion region of vis-NIR broadband photodiode[J]. Advanced Materials, 2017, 29(29): 1701412.
[34] [34] WEI C, XU J, SHI S, et al. The improved photoresponse properties of self-powered NiO/ZnO heterojunction arrays UV photodetectors with designed tunable Fermi level of ZnO[J]. Journal of Colloid and Interface Science, 2020, 577: 279-289.
[35] [35] LONG Z, XU X, YANG W, et al. Cross-bar SnO2-NiO nanofiber-arraybased transparent photodetectors with high detectivity[J]. Advanced Electronic Materials, 2020, 6(1): 1901048.
[36] [36] ZHAO B, WANG F, CHEN H, et al. Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core–shell microwire[J]. Nano Letters, 2015, 15(6): 3988-3993.
[37] [37] Alwadai N, Alharbi Z, Alreshidi F, et al. Enhanced Photoresponsivity UV-C photodetectors using a p–n junction based on ultra-wide-band gap Sn-doped β-Ga2O3 microflake/MnO quantum dots[J]. ACS Applied Materials & Interfaces, 2023, 15(9): 12127-12136.
[38] [38] XU R, RUAN S, ZHANG D, et al. Enhanced performance of ultraviolet photodetector modified by quantum dots with high responsivity and narrow detection region[J]. Journal of Alloys and Compounds, 2018, 751: 117-123.
[39] [39] HE C, GUO D, CHEN K, et al. α-Ga2O3 nanorod array——Cu2O microsphere p–n junctions for self-powered spectrum-distinguishable photodetectors[J]. ACS Applied Nano Materials, 2019, 2(7): 4095-4103.
[40] [40] WANG D, SHI P, XING R, et al. Self-powered ZnO/SrCoOx flexible ultraviolet detectors processed at room temperature[J]. Materials & Design, 2021, 203: 109616.
[41] [41] WU Z, ZHANG Z, SUN M, et al. Self-powered photodetector based on p-type CuBi2O4 with Fermi level engineering[J]. Advanced Materials Interfaces, 2021, 8(24): 2101443.
[42] [42] Ashtar M, Marwat M A, LI Z, et al. Self-powered ultraviolet/visible photodetector based on CuBi2O4/PbZr0.52Ti0.48O3 heterostructure[J]. Journal of Luminescence, 2023, 260: 119855.
[43] [43] SA T, WU G, QIN N, et al. Solution processed highly sensitive visiblelightphotodetectors based on α-Fe2O3/p-Si heterojunctions[J]. Sensors and Actuators B: Chemical, 2012, 173: 414-418.
[44] [44] ZHANG M, ZHANG H, LV K, et al. Ultraviolet photodetector with high internal gain enhanced by TiO2/SrTiO3 heterojunction[J]. Optics Express, 2012, 20(6): 5936-5941.
[45] [45] Kim D Y, Ryu J, Manders J, et al. Air-stable, solution-processed oxide p–n heterojunction ultraviolet photodetector[J]. ACS Applied Materials &Interfaces, 2014, 6(3): 1370-1374.
[46] [46] XIE T, Hasan M R, QIU B, et al. High-performing visible-blind photodetectors based on SnO2/CuO nanoheterojunctions[J]. Applied Physics Letters, 2015, 107(24): 241108.
[47] [47] XIE X, ZHANG Z, LI B, et al. Ultra-low threshold avalanche gain from solar-blindphotodetector based on graded-band-gap-cubic-MgZnO[J]. Optics Express, 2015, 23(25): 32329-32336.
[48] [48] ZHAO C, LIANG Z, Su M, et al. Self-powered, high-speed and visible–near infrared response of MoO3–x/n-Si heterojunction photodetector with enhanced performance by interfacial engineering[J]. ACS Applied Materials & Interfaces, 2015, 7(46): 25981-25990.
[49] [49] GUO X C, HAO N H, GUO D Y, et al. β-Ga2O3/p-Si heterojunction solarblind ultraviolet photodetector with enhanced photoelectric responsivity[J]. Journal of Alloys and Compounds, 2016, 660: 136-140.
[50] [50] HWANG J D, WANG S Y, HWANG S B. Using oxygen-plasma treatment to improve the photoresponse of Mg0.18Zn0.82O/p-Si heterojunction photodetectors[J]. Journal of Alloys and Compounds, 2016, 656: 618-621.
[51] [51] LI G, LIU L, WU G, et al. Self-powered UV——near infrared photodetector based on reduced graphene oxide/n-Si vertical heterojunction[J]. Small, 2016, 12(36): 5019-5026.
[52] [52] Ahmed A A, Devarajan M, Afzal N. Fabrication and characterization of high performance MSM UV photodetector based on NiO film[J]. Sensors and Actuators A: Physical, 2017, 262: 78-86.
[53] [53] LING C, GUO T, LU W, et al. Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction[J]. Nanoscale, 2017, 9(25): 8848-8857.
[54] [54] ZHANG D, LIU C, XU R, et al. The effect of self-depleting in UV photodetector based on simultaneously fabricated TiO2/NiOpn heterojunction and Ni/Au composite electrode[J]. Nanotechnology, 2017, 28(36): 365505.
[55] [55] Flemban T H, Haque M A, Ajia I, et al. A photodetector based on p-Si/nZnO nanotube heterojunctions with high ultraviolet responsivity[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 37120-37127.
[56] [56] Chauhan K R, Patel D B. Functional nanocrystalline TiO2 thin films for UV enhanced highly responsive silicon photodetectors[J]. Journal of Alloys and Compounds, 2019, 792: 968-975.
[57] [57] FU Y, LIU Y, MA K, et al. Interfacial engineering to boost photoresponse performance and stability of V2O5/n-Si heterojunction photodetectors[J]. Journal of Alloys and Compounds, 2020, 819: 153063.
[58] [58] ZHANG Z, NING Y, FANG X. From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photodetectors[J].Journal of Materials Chemistry C, 2019, 7(2): 223-229.
[59] [59] Yuvaraja S, Kumar V, Dhasmana H, et al. Ultraviolet detection properties of electrodeposited n-SnO2 modified p-Si nanowires hetero-junction photodiode[J]. Journal of Materials Science: Materials in Electronics, 2019, 30: 7618-7628.
[60] [60] JIA M, WANG F, TANG L, et al. High-performance deep ultraviolet photodetector based on NiO/β-Ga2O3 heterojunction[J]. Nanoscale Research Letters, 2020, 15(1): 47.
[61] [61] FU Q M, PENG J L, YAO Z C, et al. Highly sensitive ultraviolet photodetectors based on ZnO/SnO2 core-shell nanorod arrays[J]. Applied Surface Science, 2020, 527: 146923.
[62] [62] HUANG C Y, WEI E C, YUAN C T. Dual functional modes for nanostructured p-Cu2O/n-Si heterojunction photodiodes[J]. Nanotechnology, 2020, 32(7): 075202.
[63] [63] XU Y, SHEN H, XU B, et al. High-performance MoOx/n-Si heterojunction NIR photodetector with aluminum oxide as a tunneling passivation interlayer[J]. Nanotechnology, 2021, 32(27): 275502.
[64] [64] WANG M, ZHANG J, XIN Q, et al. Self-powered UV photodetectors and imaging arrays based on NiO/IGZO heterojunctions fabricated at room temperature[J]. Optics Express, 2022, 30(15): 27453-27461.
[65] [65] Kadhm A J, Ismail R A, Atwan A F. Fabrication of visible-enhanced nanostructured Mn2O3/Si heterojunction photodetector by rapid thermal oxidation[J]. Silicon, 2022, 14(10): 5297-5310.
[66] [66] Ismail R A, Al-Samarai A M E, Ahmed F M. Preparation of highquantum efficiency nanostructured Ag2O/Si photodetector by rapid thermal oxidation of Ag2S film: the role of oxidation time[J]. Optik, 2022, 257: 168794.
[67] [67] SHANG G, TANG L, WU G, et al. High-performance NiO/TiO2/ZnO photovoltaic UV detector[J]. Sensors, 2023, 23(5): 2741.
[68] [68] JIA M, WANG F, TANG L, et al. Low-power-consumption ultraviolet photodetector based on p-NiO/SiO2/n-ZnO[J]. Optics & Laser Technology, 2023, 157: 108634.
[69] [69] HWANG J D, LIN M C. ZnO hole blocking layer induced highly UV responsive p-NiO/n-ZnO/n-Si heterojunction photodiodes[J]. Sensors and Actuators A: Physical, 2023, 349: 114087.
[70] [70] Basak D, Amin G, Mallik B, et al. Photoconductive UV detectors on solgel-synthesized ZnO films[J]. Journal of Crystal Growth, 2003, 256(1-2): 73-77.
[71] [71] WANG Y, WU C, GUO D, et al. All-oxide NiO/Ga2O3 p-n junction for self-powered UV photodetector[J]. ACS Applied Electronic Materials, 2020, 2(7): 2032-2038.
[72] [72] ZOU J, ZHANG Q, HUANG K, et al. Ultraviolet photodetectors based on anodic TiO2 nanotube arrays[J]. The Journal of Physical Chemistry C, 2010, 114(24): 10725-10729.
[73] [73] CAO R, XU J, SHI S, et al. High-performance self-powered ultraviolet photodetectors based on mixed-dimensional heterostructure arrays formed from NiO nanosheets and TiO2 nanorods[J]. Journal of Materials Chemistry C, 2020, 8(28): 9646-9654.
[74] [74] LI Z, QIAO H, GUO Z, et al. High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered InSe nanosheets with enhanced stability[J]. Advanced Functional Materials, 2018, 28(16): 1705237.
[75] [75] Cheemadan S, Kumar M C S. Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films[J]. Materials Research Express, 2018, 5(4): 046401.
[76] [76] Chaoudhary S, Dewasi A, Rastogi V, et al. Laser ablation fabrication of a p-NiO/n-Si heterojunction for broadband and self-powered UV-visibleNIR photodetection[J]. Nanotechnology, 2022, 33(25): 255202.
[77] [77] Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J]. Advanced Materials, 2003, 15(5): 464-466.
[78] [78] JIANG D Y, ZHANG X Y, LIU Q S, et al. Improved ultraviolet/visible rejection ratio using MgZnO/SiO2/n-Si heterojunction photodetectors[J]. Applied Surface Science, 2010, 256(21): 6153-6156.
[79] [79] ZHANG T C, GUO Y, MEI Z X, et al. Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulatorMgO?p-Si[J].Applied Physics Letters, 2009, 94(11): 113508.
[80] [80] Tasi D S, KANG C F, WANG H H, et al. n-ZnO/LaAlO3/p-Si heterojunction for visible-blind UV detection[J]. Optics Letters, 2012, 37(6): 1112-1114.
[81] [81] LI Q, LI Z, YANG H, et al. Novel aluminum plasmonic absorber enhanced by extraordinary optical transmission[J]. Optics Express, 2016, 24(22): 25885-25893.
[82] [82] WU Y, SUN X J, JIA Y P, et al. Review of improved spectral response of ultraviolet photodetectors by surface plasmon[J]. Chinese Physics B, 2018, 27(12): 126101.
[83] [83] El-Mahalawy A M, Wassel A R. Enhancement of organic/inorganic hybrid photodetector based on pentacene/n-Si by surface plasmonic effect of gold and silver nanoparticles: a comparative study[J]. Optics & Laser Technology, 2020, 131: 106395.
[84] [84] Hsu C L, WANG Y C, CHANG S P, et al. Ultraviolet/visible photodetectors based on p-n NiO/ZnO nanowires decorated with Pd nanoparticles[J]. ACS Applied Nano Materials, 2019, 2(10): 6343-6351.
[85] [85] ZHANG X, CHEN Y L, LIU R S, et al. Plasmonic photocatalysis[J]. Reports on Progress in Physics, 2013, 76(4): 046401.
[86] [86] Kodama R H, Berkowitz A E. Atomic-scale magnetic modeling of oxide nanoparticles[J]. Physical Review B, 1999, 59(9): 6321.
[87] [87] El-Mahalawy A M, Abdrabou M M, Wassel A R, et al. Plasmonic enhanced ultraviolet photodetection performance of n-TiO2/p-Si anisotype heterojunction with aluminum patterned array[J]. Journal of Physics and Chemistry of Solids, 2022, 170: 110943.
[88] [88] HWANG J D, WANG S T. High-performance multicolor p-Ag:NiOx/n-Si heterojunction photodiode enhanced by Ag-doped NiOx[J]. Materials Science in Semiconductor Processing, 2022, 139: 106376.
[89] [89] Ruzgar S, Caglar Y, Polat O, et al. An Investigation of the optoelectrical properties of n-TiO2Eu/p-Si heterojunction photodiode[J]. Surfaces and Interfaces, 2022, 30: 101832.
Get Citation
Copy Citation Text
MA Xingzhao, TANG Libin, ZUO Wenbin, ZHANG Yuping, JI Rongbin. Research Progress in the Metal Oxide Heterojunction Photodetectors[J]. Infrared Technology, 2024, 46(4): 363
Category:
Received: Mar. 8, 2024
Accepted: --
Published Online: Sep. 2, 2024
The Author Email: Libin TANG (scitang@163.com)
CSTR:32186.14.