Ultrafast Science, Volume. 4, Issue 1, 0063(2024)

High Harmonic Generation Light Source with Polarization Selectivity and Sub-100-μm Beam Size for Time- and Angle-Resolved Photoemission Spectroscopy

Haoyuan Zhong1, Xuanxi Cai1, Changhua Bao1, Fei Wang1, Tianyun Lin1, Yudong Chen2, Sainan Peng2, Lin Tang1, Chen Gu1, Zhensheng Tao2, Hongyun Zhang1, and Shuyun Zhou1,3、*
Author Affiliations
  • 1State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P. R. China.
  • 2State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433, P. R. China.
  • 3Frontier Science Center for Quantum Information, Beijing 100084, P. R. China.
  • show less
    References(57)

    [1] [1] Smallwood CL, Kaindl RA, Lanzara A. Ultrafast angle-resolved photoemission spectroscopy of quantum materials. EPL. 2016;115:27001.

    [2] [2] Sobota JA, He Y, Shen Z-X. Angle-resolved photoemission studies of quantum materials. Rev Mod Phys. 2021;93: Article 025006.

    [3] [3] Boschini F, Zonno M, Damascelli A. Time- and angle-resolved photoemission studies of quantum materials. Rev Mod Phys. 2024;96:Article 015003.

    [4] [4] Zhang H, Pincelli T, Jozwiak C, Kondo T, Ernstorfer R, Sato T, Zhou S. Angle-resolved photoemission spectroscopy. Nat Rev Methods Primers. 2022;2:54.

    [5] [5] Na M, Mills AK, Jones DJ. Advancing time-and angle-resolved photoemission spectroscopy: The role of ultrafast laser development. Phys Rep. 2023;1036:1–47.

    [6] [6] Wang YH, Steinberg H, Jarillo-Herrero P, Gedik N. Observation of Floquet-Bloch states on the surface of a topological insulator. Science. 2013;342(6157):453–457.

    [7] [7] Zhou S, Bao C, Fan B, Zhou H, Gao Q, Zhong H, Lin T, Liu H, Yu P, Tang P, et al. Pseudospin-selective Floquet band engineering in black phosphorus. Nature. 2023;614:75–80.

    [8] [8] Zhou S, Bao C, Fan B, Wang F, Zhong H, Zhang H, Tang P, Duan W, Zhou S. Floquet engineering of black phosphorus upon below-gap pumping. Phys Rev Lett. 2023;131(11): Article 116401.

    [13] [13] de la Torre A, Kennes DM, Claassen M, Gerber S, McIver JW, Sentef MA. Colloquium: Nonthermal pathways to ultrafast control in quantum materials. Rev Mod Phys. 2021;93: Article 041002.

    [14] [14] Faure J, Mauchain J, Papalazarou E, Yan W, Pinon J, Marsi M, Perfetti L. Full characterization and optimization of a femtosecond ultraviolet laser source for time and angle-resolved photoemission on solid surfaces. Rev Sci Instrum. 2012;83(4): Article 043109.

    [15] [15] Smallwood CL, Jozwiak C, Zhang W, Lanzara A. An ultrafast angle-resolved photoemission apparatus for measuring complex materials. Rev Sci Instrum. 2012;83(12): Article 123904.

    [16] [16] Gauthier A, Sobota JA, Gauthier N, Xu KJ, Pfau H, Rotundu CR, Shen ZX, Kirchmann PS. Tuning time and energy resolution in time-resolved photoemission spectroscopy with nonlinear crystals. J Appl Phys. 2020;128(9): Article 093101.

    [17] [17] Bao C, Luo L, Zhang H, Zhou S, Ren Z, Zhou S. Full diagnostics and optimization of time resolution for time-and angle-resolved photoemission spectroscopy. Rev Sci Instrum. 2021;92(3): Article 033904.

    [18] [18] Kiss T, Shimojima T, Ishizaka K, Chainani A, Togashi T, Kanai T, Wang XY, Chen CT, Watanabe S, Shin S. A versatile system for ultrahigh resolution, low temperature, and polarization dependent laser-angle-resolved photoemission spectroscopy. Rev Sci Instrum. 2008;79: Article 023106.

    [19] [19] Liu G, Wang G, Zhu Y, Zhang H, Zhang G, Wang X, Zhou Y, Zhang W, Liu H, Zhao L, et al. Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV. Rev Sci Instrum. 2008;79: Article 023105.

    [20] [20] Jiang R, Mou D, Wu Y, Huang L, McMillen CD, Kolis J, Giesber HG III, Egan JJ, Kaminski A. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy. Rev Sci Instrum. 2014;85(3): Article 033902.

    [21] [21] Bao C, Zhong H, Zhou S, Feng R, Wang Y, Zhou S. Ultrafast time- and angle-resolved photoemission spectroscopy with widely tunable probe photon energy of 5.3–7.0 eV for investigating dynamics of three-dimensional materials. Rev Sci Instrum. 2022;93(1): Article 013902.

    [22] [22] Zhong H, Bao C, Lin T, Zhou S, Zhou S. A newly designed femtosecond KBe2BO3F2 device with pulse duration down to 55 fs for time- and angle-resolved photoemission spectroscopy. Rev Sci Instrum. 2022;93(11): Article 113910.

    [23] [23] Mathias S, Miaja-Avila L, Murnane MM, Kapteyn H, Aeschlimann M, Bauer M. Angle-resolved photoemission spectroscopy with a femtosecond high harmonic light source using a two-dimensional imaging electron analyzer. Rev Sci Instrum. 2007;78(8): Article 083105.

    [24] [24] Frietsch B, Carley R, Döbrich K, Gahl C, Teichmann M, Schwarzkopf O, Wernet P, Weinelt M. A high-order harmonic generation apparatus for time- and angle-resolved photoelectron spectroscopy. Rev Sci Instrum. 2013;84(7): Article 075106.

    [26] [26] Sie EJ, Rohwer T, Lee C, Gedik N. Time-resolved XUV ARPES with tunable 24–33 eV laser pulses at 30 meV resolution. Nat Commun. 2019;10(1):3535.

    [27] [27] Puppin M, Deng Y, Nicholson CW, Feldl J, Schröter NBM, Vita H, Kirchmann PS, Monney C, Rettig L, Wolf M, et al. Time- and angle-resolved photoemission spectroscopy of solids in the extreme ultraviolet at 500 kHz repetition rate. Rev Sci Instrum. 2019;90(2): Article 023104.

    [28] [28] Buss JH, Wang H, Xu Y, Maklar J, Joucken F, Zeng L, Stoll S, Jozwiak C, Pepper J, Chuang YD, et al. A setup for extreme-ultraviolet ultrafast angle-resolved photoelectron spectroscopy at 50-kHz repetition rate. Rev Sci Instrum. 2019;90(2): Article 023105.

    [29] [29] Mills AK, Zhdanovich S, Na MX, Boschini F, Razzoli E, Michiardi M, Sheyerman A, Schneider M, Hammond TJ, Süss V, et al. Cavity-enhanced high harmonic generation for extreme ultraviolet time- and angle-resolved photoemission spectroscopy. Rev Sci Instrum. 2019;90(8): Article 083001.

    [30] [30] Keunecke M, Möller C, Schmitt D, Nolte H, Jansen GSM, Reutzel M, Gutberlet M, Halasi G, Steil D, Steil S, et al. Time-resolved momentum microscopy with a 1 MHz high-harmonic extreme ultraviolet beamline. Rev Sci Instrum. 2020;91(6): Article 063905.

    [31] [31] Liu Y, Beetar JE, Hosen MM, Dhakal G, Sims C, Kabir F, Etienne MB, Dimitri K, Regmi S, Liu Y, et al. Extreme ultraviolet time- and angle-resolved photoemission setup with 21.5 meV resolution using high-order harmonic generation from a turn-key Yb:KGW amplifier. Rev Sci Instrum. 2020;91(1): Article 013102.

    [32] [32] Chen F, Wang J, Pan M, Liu J, Huang J, Zhao K, Yun C, Qian T, Wei Z, Ding H. Time-resolved ARPES with tunable 12–21.6 eV XUV at 400 kHz repetition rate. Rev Sci Instrum. 2023;94(4): Article 043905.

    [35] [35] Dong S, Puppin M, Pincelli T, Beaulieu S, Christiansen D, Hübener H, Nicholson CW, Xian RP, Dendzik M, Deng Y, et al. Direct measurement of key exciton properties: Energy, dynamics, and spatial distribution of the wave function. Nat Sci. 2021;1(1): Article e10010.

    [38] [38] Beaulieu S, Schusser J, Dong S, Schüler M, Pincelli T, Dendzik M, Maklar J, Neef A, Ebert H, Hricovini K, et al. Revealing hidden orbital pseudospin texture with time-reversal dichroism in photoelectron angular distributions. Phys Rev Lett. 2020;125: Article 216404.

    [39] [39] Schüler M, Pincelli T, Dong S, Devereaux TP, Wolf M, Rettig L, Ernstorfer R, Beaulieu S. Polarization-modulated angle-resolved photoemission spectroscopy: Toward circular dichroism without circular photons and Bloch wave-function reconstruction. Phys Rev X. 2022;12: Article 011019.

    [40] [40] Rundquist A, Durfee CG III, Chang Z, Herne C, Backus S, Murnane MM, Kapteyn HC. Phase-matched generation of coherent soft X-rays. Science. 1998;280(5368):1412–1415.

    [42] [42] Heber M, Wind N, Kutnyakhov D, Pressacco F, Arion T, Roth F, Eberhardt W, Rossnagel K. Multispectral time-resolved energy–momentum microscopy using high- harmonic extreme ultraviolet radiation. Rev Sci Instrum. 2022;93: Article 083905.

    [43] [43] Heyl CM, Coudert-Alteirac H, Miranda M, Louisy M, Kovacs K, Tosa V, Balogh E, Varjú K, L’Huillier A, Couairon A, et al. Scale-invariant nonlinear optics in gases. Optica. 2016;3(1):75–81.

    [45] [45] Bao C, Zhang H, Zhang T, Wu X, Luo L, Zhou S, Li Q, Hou Y, Yao W, Liu L, et al. Experimental evidence of chiral symmetry breaking in Kekulé-ordered graphene. Phys Rev Lett. 2021;126: Article 206804.

    [46] [46] Tao Z, Chen C, Szilvási T, Keller M, Mavrikakis M, Kapteyn H, Murnane M. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science. 2016;353:62–67.

    [47] [47] Shi X, Liao CT, Tao Z, Cating-Subramanian E, Murnane MM, Hernández-García C, Kapteyn HC. Attosecond light science and its application for probing quantum materials. J Phys B Atomic Mol Phys. 2020;53(18): Article 184008.

    [49] [49] Zhong H, Zhang H, Zhang H, Bao T, Zhang K, Xu S, Luo L, Rousuli A, Yao W, Denlinger JD, et al. Revealing the two-dimensional electronic structure and anisotropic superconductivity in a natural van der Waals superlattice (PbSe)1.14NbSe2. Phys Rev Mater. 2023;7:L041801.

    [50] [50] Mahatha S, Patel K, Menon KS. Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoemission spectroscopy and ab initio band structure studies. J Phys Condens Matter. 2012;24: Article 475504.

    [52] [52] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Controlling the electronic structure of bilayer graphene. Science. 2006;313(5789):951–954.

    [53] [53] Zhang H et al. Self-energy dynamics and the mode-specific phonon threshold effect in Kekulé- ordered graphene. Natl Sci Rev. 2021;9(5): Article nwab175.

    [54] [54] Ulstrup S, Johannsen JC, Cilento F, Miwa JA, Crepaldi A, Zacchigna M, Cacho C, Chapman R, Springate E, Mammadov S, et al. Ultrafast dynamics of massive Dirac fermions in bilayer graphene. Phys Rev Lett. 2014;112: Article 257401.

    [55] [55] Ulstrup S, Johannsen JC, Crepaldi A, Cilento F, Zacchigna M, Cacho C, Chapman RT, Springate E, Fromm F, Raidel C, et al. Ultrafast electron dynamics in epitaxial graphene investigated with time-and angle-resolved photoemission spectroscopy. J Phys Condens Matter. 2015;27: Article 164206.

    [56] [56] Aeschlimann S, Sato SA, Krause R, Chávez-Cervantes M, de Giovannini U, Hübener H, Forti S, Coletti C, Hanff K, Rossnagel K, et al. Survival of Floquet–Bloch states in the presence of scattering. Nano Lett. 2021;21(12):5028–5035.

    Tools

    Get Citation

    Copy Citation Text

    Haoyuan Zhong, Xuanxi Cai, Changhua Bao, Fei Wang, Tianyun Lin, Yudong Chen, Sainan Peng, Lin Tang, Chen Gu, Zhensheng Tao, Hongyun Zhang, Shuyun Zhou. High Harmonic Generation Light Source with Polarization Selectivity and Sub-100-μm Beam Size for Time- and Angle-Resolved Photoemission Spectroscopy[J]. Ultrafast Science, 2024, 4(1): 0063

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Feb. 6, 2024

    Accepted: Apr. 27, 2024

    Published Online: Dec. 13, 2024

    The Author Email: Zhou Shuyun (syzhou@mail.tsinghua.edu.cn)

    DOI:10.34133/ultrafastscience.0063

    Topics