Spacecraft Recovery & Remote Sensing, Volume. 45, Issue 4, 124(2024)

Research Progress on High-Resolution Remote Sensing Image Scene Classification

Donghang YU1... Guangyi SHI1, Yukun ZHOU1, Xiaochen WU1 and Chuan ZHAO2 |Show fewer author(s)
Author Affiliations
  • 1Naval Research Institute, Beijing 100070, China
  • 2Rocket Force Command College, Wuhan 430012, China
  • show less
    References(82)

    [2] [2] YANG Y, NEWSAM S. Bagofvisualwds Spatial Extensions f Luse Classification[C] Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Infmation Systems. New Yk, NY: Association f Computing Machinery, 2010: 270279.

    [9] [9] HE K, ZHANG X, REN S, et al. Deep Residual Learning f Image Recognition[C]2016 IEEE Conference on Computer Vision Pattern Recognition (CVPR). [S.l.]: IEEE, 2016: 770778.

    [11] [11] XIA G S, YANG W, DELON J, et al. Structural Highresolution Satellite Image Indexing[C]ISPRS Commission Technical Commission VII Symposium: 100 Years ISPRS — Advancing Remote Sensing Science. Nottingham: Remote Sensing Photogrammetry Society, 2010, 38: 298303.

    [13] [13] HU J, JIANG T, TONG X, et al. A Benchmark f Scene Classification of High Spatial Resolution Remote Sensing Imagery[C]2015 IEEE International Geoscience Remote Sensing Symposium (IGARSS). [S.l.]: IEEE, 2015: 50035006.

    [14] [14] BASU S, GANGULY S, MUKHOPADHYAY S, et al. Deepsat: A Learning Framewk f Satellite Imagery[C]Proceedings of the 23rd SIGSPATIAL International Conference on Advances In Geographic Infmation Systems. Seattle, Washington: ACM, 2015: 110. DOI: 10.11452820783.2820816.

    [21] Q WANG, S LIU, J CHANUSSOT et al. Scene Classification with Recurrent Attention of VHR Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 57, 1155-1167(2018).

    [23] [23] SUMBUL G, FUELAN M, DEMIR B, et al. Bigearth: A LargeScale Benchmark Archive f Remote Sensing Image Understing[C]2019 IEEE International Geoscience Remote Sensing Symposium. Piscataway: IEEE, 2019: 59015904.

    [26] G MACHADO, E FERREIRA, K NOGUEIRA et al. AiRound and CV-BrCT: Novel Multiview Datasets for Scene Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 488-503(2020).

    [27] [27] HUA Y, MOU L, JIN P, et al. MultiScene: A largescale Dataset Benchmark f Multiscene Recognition in single Aerial Images[J]. IEEE Transactions on Geoscience Remote Sensing, 2022, 60: 5610213.

    [32] [32] LIU K, YANG J, LI S. RemoteSensing CrossDomain Scene Classification: A Dataset Benchmark. Remote Sensing[J]. Remote Sensing, 2022, 14(18): 4635.

    [33] [33] DENG J, DONG W, SOCHER R, et al. Image: A Largescale Hierarchical Image Database[C]2009 IEEE Conference on Computer Vision Pattern Recognition. [S.l.]: IEEE, 2009: 248255.

    [42] [42] STRICKER M, ENGO M. Similarity of Col Images[C]Stage Retrieval f Image Video Databases III. [S.l.]: SPIE, 1995, 2420: 381392.

    [43] R M HARALICK, K SHANMUGAM, I H DINSTEIN. Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, 610-621(1973).

    [45] [45] DALAL N, TRIGGS B. Histograms of iented Gradients f Human Detection[C]2005 IEEE Computer Society Conference on Computer Vision Pattern Recognition (CVPR''05). [S.l.]: IEEE, 2005, 1: 886893.

    [47] [47] BAY H, TUYTELAARS T, GOOL L V. Surf: Speeded up Robust Features[COL]Proceedings of the 9th European Conference on Computer Vision Volume Part I. Berlin, Heidelberg: SpringerVerlag, 2006: 404417. https:doi.g10.100711744023_32.

    [50] [50] JOACHIMS T. Text Categization with Suppt Vect Machines: Learning with Many Relevant Features[C]European Conference on Machine Learning. Berlin, Heidelberg: SpringerVerlag, 1998: 137142.

    [51] V RISOJEVIĆ, Z BABIĆ. Fusion of Global and Local Descriptors for Remote Sensing Image Classification. IEEE Geoscience and Remote Sensing Letters, 10, 836-840(2012).

    [54] [54] PENATTI O, NOGUEIRA K, DOS SANTOS J. Do Deep Features Generalize from Everyday Objects to Remote Sensing Aerial Scenes Domains[C]Proceedings of the 2015 IEEE Conference on Computer Vision Pattern Recognition Wkshops (CVPRW). Piscataway: IEEE, 2015: 4451.

    [59] [59] SABOUR S, FROSST N, HINTON G E. Dynamic Routing between Capsules[C]Proceedings of the 31st International Conference on Neural Infmation Processing Systems. Red Hook, NY, United States: Curran Associates Inc., 2017: 38593869.

    [60] P DU, E LI, J XIA et al. Feature and Model Level Fusion of Pretrained CNN for remote Sensing Scene Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 2600-2611(2018).

    [75] D ZHANG, N LI, Q YE. Positional Context Aggregation Network for Remote Sensing Scene Classification. IEEE Geoscience and Remote Sensing Letters, 17, 943-947(2019).

    [77] J JI, T ZHANG, L JIANG et al. Combining Multilevel Features for Remote Sensing Image Scene Classification with Attention Model. IEEE Geoscience and Remote Sensing Letters, 17, 1647-1651(2019).

    [82] R CAO, L FANG, T LU et al. Self-attention-based Deep Feature Fusion for Remote Sensing Scene Classification. IEEE Geoscience and Remote Sensing Letters, 18, 43-47(2020).

    [88] [88] WANG Q, ZHANG L, WU B, et al. What Deep CNNs Benefit from Global Covariance Pooling: an Optimization Perspective[C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition. [S.l.]: IEEE, 2020: 1077110780.

    [92] [92] XU K, HUANG H, DENG P, et al. Deep Feature Aggregation Framewk Driven by Graph Convolutional wk f Scene Classification in remote Sensing[J]. IEEE Transactions on Neural wks Learning Systems, 2022, 33(10): 57515765.

    [94] T WEI, J WANG, W LIU et al. Marginal Center Loss for Deep Remote Sensing Image Scene Classification. IEEE Geoscience and Remote Sensing Letters, 17, 968-972(2019).

    [97] [97] LV P, WU W, ZHONG Y, et al. SCViT: A Spatialchannel Feature Preserving Vision Transfmer f Remote Sensing Image Scene Classification[JOL]. IEEE Transactions on Geoscience Remote Sensing, 2022, 60: 112[20230831]. https:doi.g10.1109TGRS.2022.3157671.

    [99] [99] OLIVA A, TRALBA A. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope[J]. International Journal of Computer Vision, 2001, 42(3): 145175.

    [100] [100] LAZEBNIK S, SCH C, PONCE J. Beyond Bags of Features: Spatial Pyra Matching f Recognizing Natural Scene Categies[C]ICT''07: XXVI International Conference on Thermoelectrics June 35, 2007 Shineville Luxury Rest Jeju, Kea. Piscataway: IEEE, 2007: 21692176.

    [101] [101] SIMONYAN K, ZISSERMAN A. Very Deep Convolutional wks f LargeScale Image Recognition[JOL]. CR, 2014, abs1409.1556[20230904]. https:api.semanticscholar.gCpusID:14124313.

    [102] [102] SZEGEDY C, LIU W, JIA Y, et al. Going Deeper with Convolutions[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition (CVPR). Boston, USA: IEEE, 2015: 19.

    Tools

    Get Citation

    Copy Citation Text

    Donghang YU, Guangyi SHI, Yukun ZHOU, Xiaochen WU, Chuan ZHAO. Research Progress on High-Resolution Remote Sensing Image Scene Classification[J]. Spacecraft Recovery & Remote Sensing, 2024, 45(4): 124

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 4, 2023

    Accepted: --

    Published Online: Nov. 1, 2024

    The Author Email:

    DOI:10.3969/j.issn.1009-8518.2024.04.013

    Topics