Laser & Optoelectronics Progress, Volume. 50, Issue 12, 120004(2013)

Research Progress of Optofluidic Flow Cytometry

Luo Dong1,2、*, Lu Yuanfu1, Jiao Guohua1, Dong Yuming1, Liu Peng1, Chen Sihai1, and Lü Jiancheng1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(40)

    [1] [1] Wei Xiyin, Niu Ruifang. The development history, mechanism and application of flow cytometer [J]. Modern Instruments and Medical Treatment, 2006, (4): 8-11.

    [2] [2] Liu Shoukun, Su Xianzhong, Jin Qinghui, et al.. Microfluidic chip flow cytometry [J]. Microelectronics, 2009, 39(5): 696-703.

    [3] [3] J Knight, A Vishwanath, J Brody, et al.. Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds [J]. Phys Rev Lett, 1998, 80(17): 3863-3866.

    [4] [4] G Lee, C Hung, B Ke, et al.. Hydrodynamic focusing for a micromachined flow cytometer [J]. J Fluids Engineering, 2001, 123(3): 672-679.

    [5] [5] M Rosenauer, W Buchegger, I Finoulst, et al.. Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes [J]. Microfluidics and Nanofluidics, 2011, 10(4): 761-771.

    [6] [6] S Hong, P Tsou, C Chou, et al.. Microfluidic three-dimensional hydrodynamic flow focusing for the rapid protein concentration analysis [J]. Biomicrofluidics, 2012, 6(2): 024132.

    [7] [7] G Testa, R Bernini. Micro flow cytometer with 3D hydrodynamic focusing [C]. SPIE, 2012, 8212: 82120H.

    [8] [8] J Godin, C Chen, S Cho, et al.. Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip [J]. J Biophotonics, 2008, 1(5): 355-376.

    [9] [9] T D Chung, H C Kim. Recent advances in miniaturized microfluidic flow cytometry for clinical use [J]. Electrophoresis, 2007, 28(24): 4511-4520.

    [10] [10] S Lin, P Yen, C Peng, et al.. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing [J]. Lab Chip, 2012, 12(17): 3135-3141.

    [11] [11] Y W Kim, J Y Yoo. Axisymmetric flow focusing of particles in a single microchannel [J]. Lab Chip, 2009, 9(8): 1043-1045.

    [12] [12] J Shi, X Mao, D Ahmed, et al.. Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW) [J]. Lab Chip, 2008, 8(2): 221-223.

    [13] [13] Wan Jing, Liang Zhongcheng. New techniques of optofluidic chip on actuation of liquid [J]. Laser & Optoelectronics Progress, 2010, 47(9): 091302.

    [14] [14] S Yang, J Y Kim, S J Lee, et al.. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel [J]. Lab Chip, 2011, 11(2): 266-273.

    [15] [15] S Emaminejad, M Javanmard, R W Dutton, et al.. Microfluidic diagnostic tool for the developing world: contactless impedance flow cytometry [J]. Lab Chip, 2012, 12(21): 4499-4507.

    [16] [16] D Barat, D Spencer, G Benazzi, et al.. Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer [J]. Lab Chip, 2012, 12(1): 118-126.

    [17] [17] N Pamme, R Koyama, A Manz. Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay [J]. Lab Chip, 2003, 3(3): 187-192.

    [18] [18] B Rene, F Michel, C Alain. Flow Cytometry Analysis Across Optical Fiber [P]. World Patent, WO2007/022641, 2007-03-01.

    [19] [19] Z Shen, Y Zou, X Chen. Characterization of microdroplets using optofluidic signals [J]. Lab Chip, 2012, 12(19): 3816-3820.

    [20] [20] S K Tang, B T Mayers, D V Vezenov, et al.. Optical waveguiding using thermal gradients across homogeneous liquids in microfluidic channels [J]. Appl Phys Lett, 2006, 88(6): 061112.

    [21] [21] Y Yang, A Q Liu, L K Chin, et al.. Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation [J]. Nature Commun, 2012, 3(1): 651.

    [22] [22] P Fei, Z Chen, Y Men, et al.. A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides [J]. Lab Chip, 2012, 12(19): 3700-3706.

    [23] [23] N Gopalakrishnan, K S Sagar, M B Christiansen, et al.. UV patterned nanoporous solid-liquid core waveguides [J]. Opt Express, 2010, 18(12): 12903-12908.

    [24] [24] H C Sung, J Godin, L Yu-Hwa. Optofluidic waveguides in teflon AF-coated PDMS microfluidic channels [J]. IEEE Photon Technol Lett, 2009, 21(15): 1057-1059.

    [25] [25] W Song, D Psaltis. Pneumatically tunable optofluidic dye laser [J]. Appl Phys Lett, 2010, 96(8): 081101.

    [26] [26] Y Yang, A Q Liu, L K Chin, et al.. A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams [J]. Lab Chip, 2011, 11(18): 3182-3187.

    [27] [27] R Bernini, G Testa, L Zeni, et al.. Integrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides [J]. Appl Phys Lett, 2008, 93(1): 011106.

    [28] [28] N Pamme, A Manz. On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates [J]. Anal Chem, 2004, 76(24): 7250-7256.

    [29] [29] T Laurell, F Petersson, A Nilsson. Chip integrated strategies for acoustic separation and manipulation of cells and particles [J]. Chem Soc Rev, 2007, 36(3): 492-506.

    [30] [30] N Pamme. Continuous flow separations in microfluidic devices [J]. Lab Chip, 2007, 7(12): 1644-1659.

    [31] [31] A Y Fu, C Spence, A Scherer, et al.. A microfabricated fluorescence-activated cell sorter [J]. Nature Biotechnol, 1999, 17(11): 1109-1111.

    [32] [32] P S Dittrich, P Schwille. An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles [J]. Anal Chem, 2003, 75(21): 5767-5774.

    [33] [33] S Fiedler, R Hagedorn, T Schnelle, et al.. Diffusional electrotitration: generation of pH gradients over arrays of ultramicroelectrodes detected by fluorescence [J]. Anal Chem, 1995, 67(5): 820-828.

    [34] [34] Y Lin, G Lee. Optically induced flow cytometry for continuous microparticle counting and sorting [J]. Biosensors and Bioelectronics, 2008, 24(4): 572-578.

    [35] [35] C H Chen, S H Cho, F Tsai, et al.. Microfluidic cell sorter with integrated piezoelectric actuator [J]. Biomedical Microdevices, 2009, 11(6): 1223-1231.

    [36] [36] S H Cho, C H Chen, Y H Lo. Optofluidic biosensors-miniaturized multi-color flow cytometer and fluorescence-activated cell sorter (microFACS) [C]. SPIE, 2011, 8089: 80990F.

    [37] [37] A Wolff, I R Perch-Nielsen, U D Larsen, et al.. Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter [J]. Lab Chip, 2003, 3(1): 22-27.

    [38] [38] M M Wang, E Tu, D E Raymond, et al.. Microfluidic sorting of mammalian cells by optical force switching [J]. Nature Biotechnol, 2005, 23(1): 83-87.

    [40] [40] S H Cho, J M Godin, C H Chen, et al.. Recent advancements in optofluidic flow cytometer [J]. Biomicrofluidics, 2010, 4(4): 043001.

    Tools

    Get Citation

    Copy Citation Text

    Luo Dong, Lu Yuanfu, Jiao Guohua, Dong Yuming, Liu Peng, Chen Sihai, Lü Jiancheng. Research Progress of Optofluidic Flow Cytometry[J]. Laser & Optoelectronics Progress, 2013, 50(12): 120004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jul. 30, 2013

    Accepted: --

    Published Online: Nov. 19, 2013

    The Author Email: Dong Luo (dong.luo@siat.ac.cn)

    DOI:10.3788/lop50.120004

    Topics