Optics and Precision Engineering, Volume. 23, Issue 10, 2989(2015)
Infrared super resolution reconstruction based on region division
[1] [1] LIU H C, LI S T, YIN H T. Infrared surveillance image super resolution via group sparse representation [J]. Optics Communications, 2013, 289: 45-52.
[2] [2] LAHIRI B B, BAGAVATHIAPPAN S, JAYAKUMAR T, et al.. Medical applications of infrared thermography: A review [J]. Infrared Physics and Technology, 2012, 55(4): 221-235.
[3] [3] LI ZH J, WANG W H, NIU ZH D, et al.. Cloud recognition from infrared remote sensing images under city background[J]. Chinese Journal of Lasers, 2012, 39(11): 121-126. (in Chinese)
[4] [4] WANG P, SUN J Y, LI L L, et al.. Image quality modeling in forward-looking infrared building detection[J]. Advances in Information Sciences and Service Sciences, 2012, 4(23): 757-764.
[5] [5] DIAO W H, MAO X, CHANG L. A new quality estimation method for infrared target images[J]. Acta Aeronautica et Astronautica Sinica, 2014, 31(10): 2026-2033. (in Chinese)
[8] [8] HE M, WANG Y D, WANG X S, et al.. Adaptive scene-based gray super-resolution technology of infrared focal plane imaging system[J]. Infrared and Laser Engineering, 2014, 43(7): 2138-2142.(in Chinese)
[9] [9] SUN Y B, WEI ZH H, XIAO L, et al.. Multimorphology sparsity regularized image super-resolution [J]. Acta Electronica Sinica, 2010, 38(12): 2898-2903. (in Chinese)
[10] [10] HU X Y, PENG S L, HWANG W L. Learning adaptive interpolation kernels for fast single-image super resolution[J]. Signal, Image and Video Processing, 2014, 8(6): 1077-1086.
[11] [11] CHEN H H, XUE J L, ZHANG S, et al.. Image super-resolution based on adaptive cosparse regularisation [J]. Electronics Letters, 2014, 50(24): 1834-1836.
[14] [14] PAN Z X, YU J, XIAO CH B, et al.. Single image super resolution based on adaptive multi-dictionary learning[J]. Acta Electronica Sinica, 2015, 43(2): 209-216. (in Chinese)
[15] [15] ZHANG Y H, DU Y, LING F, et al.. Example-based super-resolution land cover mapping using support vector regression[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(4): 1271-1283.
[16] [16] QIN F Q, ZHU L H, CAO L L, et al.. Blind single-image super resolution reconstruction with defocus blur[J]. Sensors and Transducers, 2014, 169(4): 77-83.
[17] [17] MAYBOUDI L S, BIRK A M, ZAK G, et al.. Infrared observations and finite element modeling of a laser transmission welding process[J]. Journal of Laser Applications, 2009, 21(3): 111-118.
[18] [18] BAI J Q, ZHAO C G, WANG X Y, et al.. Image registration and noise removed for infrared subpixel-shifted images[C]. Proceedings of SPIE - The International Society for Optical Engineering, 2014, 9142.
[19] [19] LV X G, LE J, HUANG J, et al.. A fast high-order total variation minimization method for multiplicative noise removal[J]. Mathematical Problems in Engineering, 2013,Doi: 10.1155/2013/834035.
[20] [20] YUAN Q Q, ZHANG L P, SHEN H F. Multiframe super-resolution employing a spatially weighted total variation model [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(3): 379-392.
[21] [21] XU M X, SUN Q S, HUANG C R, et al.. Super-resolution imaging based on generalized total variation regularization[J]. Sensor Letters, 2014, 12(2): 345-351.
Get Citation
Copy Citation Text
ZHAI Hai-tian, LI Hui, LI Bin. Infrared super resolution reconstruction based on region division[J]. Optics and Precision Engineering, 2015, 23(10): 2989
Category:
Received: Jul. 6, 2015
Accepted: --
Published Online: Nov. 30, 2015
The Author Email: Hai-tian ZHAI (haitian_1988@mail.nwpu.edu.cn)