Acta Photonica Sinica, Volume. 41, Issue 2, 166(2012)
Fluorescence Enhancement of CdTe Nanocystals Induced by Ag/TiO2 Core-shell Nanoparticles
[1] [1] KIM K, LEE Y M, LEE J W, et al. Metal-enhanced fluorescence of rhodamine b isothiocyanate from micrometer-sized silver powders[J]. Langmuir, 2009, 25(5): 2641-2645.
[2] [2] YANG Xing-hua, WANG Li-li, YANG Sheng, et al. Potential applications of ag microtubes modif ied polymer crystal optical fibres as chemical and optical sensor materials[J]. Acta Photonica Sinica, 2008, 37(7): 1338-1341.
[3] [3] ZHANG Y, DRAGAN A, GEDDES C D. Wavelength dependence of metal-enhanced fluorescence[J]. Journal of Physical Chemistry C, 2009, 113(28): 12095-12100.
[5] [5] CHOWDHURY M H, RAY K, ASLAN K, et al. Metal-enhanced fluorescence of phycobiliproteins from heterogeneous plasmonic nanostructures[J]. Journal of Physical Chemistry C, 2007, 111(51): 18856-18863.
[6] [6] ZHANG Y X, DRAGAN A, GEDDES C D. Broad Wavelength range metal-enhanced fluorescence using nickel nanodeposits[J]. Journal of Physical Chemistry C, 2009, 113(36): 15811-15816.
[7] [7] FORT E, GRESILLON S. Surface enhanced fluorescence[J]. Journal of Physics D-Applied Physics, 2008, 41(1): 1-31.
[8] [8] ASLAN K, GRYCZYNSKI I, MALICKA J, et al. Metal-enhanced fluorescence: an emerging tool in biotechnology[J]. Current Opinion in Biotechnology, 2005, 16(1): 55-62.
[9] [9] GOLDYS E M, BARNETT A, XIE F, et al. Plasmon-enhanced fluorescence near metallic nanostructures: biochemical applications[J]. Applied Physics a-Materials Science & Processing, 2007, 89(2): 265-271.
[10] [10] LAKOWICZ J R. Radiative decay engineering: Biophysical and biomedical applications[J]. Analytical Biochemistry, 2001, 298(1): 1-24.
[11] [11] WANG C L, ZHANG H, XU S H, et al. Sodium-citrate-assisted synthesis of aqueous cdte nanocrystals: giving new insight into the effect of ligand shell[J]. The Journal of Physical Chemistry C, 2009, 113(3): 827-833.
[12] [12] TALAPIN D V, ROGACH A L, SHEVCHENKO E V, et al. Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency[J]. Journal of the American Chemical Society, 2002, 124(20): 5782-5790.
[13] [13] ZHANG J, BADUGU R, LAKOWICZ J R. Fluorescence quenching of cdte nanocrystals by bound gold nanoparticles in aqueous solution[J]. Plasmonics, 2007, 3(1): 3-11.
[14] [14] WANG C L, ZHANG H, ZHANG J H, et al. Ligand dynamics of aqueous cdte nanocrystals at room temperature[J]. Journal of Physical Chemistry C, 2008, 112(16): 6330-6336.
[15] [15] SAKAI H, KANDA T, SHIBATA H, et al. Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle[J]. Journal of the American Chemical Society, 2006, 128(15): 4944-4945.
[16] [16] ISABED P S, DMITRY S K, ARIF A M, et al. One-pot synthesis of Ag@TiO2 core-shell nanoparticles and their layer-by-layer assembly[J]. Langmuir, 2000, 16(6): 2731-2735.
[17] [17] SHUPING X, SHAY H, JULIA X Z. Engineering of SiO2-au-SiO2 sandwich nanoaggregates using a building block: single, double, and triple cores for enhancement of near infrared fluorescence[J]. Langmuir, 2008, 24(14): 7492-7499.
[18] [18] SCHWARTXBERG A M, ZHANG J Z. Novel optical properties and emerging applications of metal nanostructures[J]. Journal of Physical Chemistry C, 2008, 112(28): 10323-10337.
[19] [19] NOGUEZ C. Surface plasmons on metal nanoparticles: The influence of shpae and physical environment[J]. Journal of Physical Chemistry C, 2007, 111(10): 3806-3819.
Get Citation
Copy Citation Text
XIA Zheng-rong, LI Rong-qing. Fluorescence Enhancement of CdTe Nanocystals Induced by Ag/TiO2 Core-shell Nanoparticles[J]. Acta Photonica Sinica, 2012, 41(2): 166
Received: Aug. 17, 2011
Accepted: --
Published Online: Mar. 9, 2012
The Author Email: Zheng-rong XIA (lrongqing@yahoo.cn)