Laser & Optoelectronics Progress, Volume. 57, Issue 20, 201508(2020)

3D Object Detection Based on Improved Frustum PointNet

Xunhua Liu1,2、*, Shaoyuan Sun1,2, Lipeng Gu1,2, and Xiang Li1,2
Author Affiliations
  • 1College of Information Science and Technology, Donghua University, Shanghai 201620, China
  • 2Engineering Research Center of Digitized Textile & Fashion Technology, Ministry of Education, Donghua University, Shanghai 201620, China;
  • show less
    References(15)

    [4] Chen X Z, Ma H M, Wan J et al. Multi-view 3D object detection network for autonomous driving. [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 6526-6534(2017).

    [5] Qi C R, Liu W, Wu C X et al. Frustum PointNets for 3D object detection from RGB-D data. [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE, 918-927(2018).

    [6] He K M, Gkioxari G, Dollar P et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 386-397(2020).

    [7] Qi C R, Yi L, Su H et al. -07-07)[2019-12-23]. https:∥arxiv., org/abs/1706, 02413(2017).

    [8] Wan P. Object detection of 3D point clouds based on F-PointNet[J]. Journal of Shandong University (Engineering Science), 49, 98-104(2019).

    [9] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. ∥Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science. Cham: Springer, 11211, 3-19(2018).

    [10] Lin T Y, Goyal P, Girshick R et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 318-327(2020).

    [11] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection. [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 936-944(2017).

    [12] Jaderberg M, Simonyan K, Zisserman A et al. -02-04)[2019-12-23]. https:∥arxiv., org/abs/1506, 02025(2016).

    [13] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite. [C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA. New York: IEEE, 3354-3361(2012).

    [14] Liang M, Yang B, Wang S L et al. Deep continuous fusion for multi-sensor 3D object detection[M]. ∥Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science. Cham: Springer, 11220, 663-678(2018).

    [15] Deng J, Czarnecki K. MLOD: a multi-view 3D object detection based on robust feature fusion method. [C]∥2019 IEEE Intelligent Transportation Systems Conference (ITSC), October 27-30, 2019, Auckland, New Zealand. New York: IEEE, 279-284(2019).

    Tools

    Get Citation

    Copy Citation Text

    Xunhua Liu, Shaoyuan Sun, Lipeng Gu, Xiang Li. 3D Object Detection Based on Improved Frustum PointNet[J]. Laser & Optoelectronics Progress, 2020, 57(20): 201508

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Dec. 24, 2019

    Accepted: Mar. 9, 2020

    Published Online: Oct. 13, 2020

    The Author Email: Liu Xunhua (XunHua_LIU@163.com)

    DOI:10.3788/LOP57.201508

    Topics