Journal of the Chinese Ceramic Society, Volume. 51, Issue 12, 3083(2023)
Electrochemical Properties of BaZr0.76-xY0.2PrxNi0.04O3-δ Proton Conductors
[1] [1] DICKS A L. Hydrogen generation from natural gas for the fuel cell systems of tomorrow[J]. J Power Sources, 1996, 61(1/2): 113–124.
[2] [2] RITTER J A, EBNER A D. State-of-the-art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries[J]. Sep Sci Technol, 2007, 42(6): 1123–1193.
[3] [3] SAZALI N, MOHAMED M A, SALLEH W N W. Membranes for hydrogen separation: A significant review[J]. Int J Adv Manuf Technol, 2020, 107(3/4): 1859–1881.
[4] [4] SAINI N, AWASTHI K. Insights into the progress of polymeric nano-composite membranes for hydrogen separation and purification in the direction of sustainable energy resources[J]. Sep Purif Technol, 2022, 282: 120029.
[5] [5] FABBRI E, PERGOLESI D, LICOCCIA S, et al. Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1?xYxO3?δ fuel cell electrolytes?[J]. Solid State Ion, 2010, 181(21/22): 1043–1051.
[6] [6] (BALU) BALACHANDRAN U, LEE T H, PARK C Y, et al. Dense cermet membranes for hydrogen separation[J]. Sep Purif Technol, 2014, 121: 54–59.
[7] [7] FAROOQ U, NAZ F, PHUL R, et al. Development of heterostructured ferroelectric SrZrO?/CdS photocatalysts with enhanced surface area and photocatalytic activity[J]. J Nanosci Nanotechnol, 2020, 20(6): 3770–3779.
[8] [8] MEDVEDEV D, MURASHKINA A, PIKALOVA E, et al. BaCeO3: Materials development, properties and application[J]. Prog Mater Sci, 2014, 60: 72–129.
[9] [9] MEDVEDEV D A, LYAGAEVA J G, GORBOVA E V, et al. Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes[J]. Prog Mater Sci, 2016, 75: 38–79.
[10] [10] ZHAO L, LI G, CHEN K F, et al. Sm0.5Sr0.5CoO3?δ infiltrated Ce0.9Gd0.1O2?δ composite cathodes for high performance protonic ceramic fuel cells[J]. J Power Sources, 2016, 333: 24–29.
[11] [11] LING Y H, WANG F, ZHAO L, et al. Comparative study of electrochemical properties of different composite cathode materials associated to stable proton conducting BaZr0.7Pr0.1Y0.2O3?δ electrolyte[J]. Electrochim Acta, 2014, 146: 1–7.
[12] [12] YAJIMA T, SUZUKI H, YOGO T, et al. Protonic conduction in SrZrO3-based oxides[J]. Solid State Ion, 1992, 51(1–2): 101–107.
[13] [13] LUISETTO I, LICOCCIA S, D'EPIFANIO A, et al. Electrochemical performance of spin coated dense BaZr0.80Y0.16Zn0.04O3?δ membranes[J]. J Power Sources, 2012, 220: 280–285.
[14] [14] HAN D L, OTANI Y, NODA Y, et al. Strategy to improve phase compatibility between proton conductive BaZr0.8Y0.2O3?δ and nickel oxide[J]. RSC Adv, 2016, 6(23): 19288–19297.
[15] [15] TONG J H, CLARK D, HOBAN M, et al. Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped Barium zirconium ceramics[J]. Solid State Ion, 2010, 181(11/12): 496–503.
[16] [16] GAO D Y, GUO R S. Structural and electrochemical properties of yttrium-doped Barium zirconate by addition of CuO[J]. J Alloys Compd, 2010, 493(1/2): 288–293.
[17] [17] BABILO P, HAILE S M. Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO[J]. J Am Ceram Soc, 2005, 88(9): 2362–2368.
[18] [18] SUN Z Q, FABBRI E, BI L, et al. Electrochemical properties and intermediate-temperature fuel cell performance of dense yttrium-doped Barium zirconate with calcium addition[J]. J Am Ceram Soc, 2012, 95(2): 627–635.
[19] [19] SUN Z Q, FABBRI E, BI L, et al. Lowering grain boundary resistance of BaZr0.8Y0.2O3?δ with LiNO3 sintering-aid improves proton conductivity for fuel cell operation[J]. Phys Chem Chem Phys, 2011, 13(17): 7692–7700.
[20] [20] PENG C, MELNIK J, LUO J L, et al. BaZr0.8Y0.2O3?δ electrolyte with and without ZnO sintering aid: Preparation and characterization[J]. Solid State Ion, 2010, 181(29/30): 1372–1377.
[21] [21] SHAFI S P, BI L, BOULFRAD S, et al. Y and Ni co-doped BaZrO3 as a proton-conducting solid oxide fuel cell electrolyte exhibiting superior power performance[J]. J Electrochem Soc, 2015, 162(14): F1498–F1503.
[22] [22] YAMAZAKI Y, HERNANDEZ-SANCHEZ R, HAILE S M. High total proton conductivity in large-grained yttrium-doped Barium zirconate[J]. Chem Mater, 2009, 21(13): 2755–2762.
[23] [23] WENG G W, OUYANG K, LIN X H, et al. Enhanced hydrogen permeability of mixed protonic?electronic conducting membranes through an in-situ exsolution strategy[J]. Adv Funct Mater, 2022, 32(36): 2205255.
[24] [24] YANG M T, HE F, ZHOU C, et al. New perovskite membrane with improved sintering and self-reconstructed surface for efficient hydrogen permeation[J]. J Membr Sci, 2021, 620: 118980.
[25] [25] DANILOV N, PIKALOVA E, LYAGAEVA J, et al. Grain and grain boundary transport in BaCe0.5Zr0.3Ln0.2O3?δ (Ln?Y or lanthanide) electrolytes attractive for protonic ceramic fuel cells application[J]. J Power Sources, 2017, 366: 161–168.
[26] [26] KUROHA T, NIINA Y, SHUDO M, et al. Optimum dopant of Barium zirconate electrolyte for manufacturing of protonic ceramic fuel cells[J]. J Power Sources, 2021, 506: 230134.
[27] [27] LIU Q S, XU L L, MENG J L, et al. Microscopic mechanism study of 4f electrons’ positive effect on the enhanced proton conduction in a Pr-doped BaCeO3 electrolyte[J]. J Phys Chem C, 2020, 124(39): 21232–21241.
[28] [28] YAMAZAKI Y, BLANC F, OKUYAMA Y, et al. Proton trapping in yttrium-doped Barium zirconate[J]. Nat Mater, 2013, 12(7): 647–651.
[29] [29] DRABER F M, ADER C, ARNOLD J P, et al. Nanoscale percolation in doped BaZrO3 for high proton mobility[J]. Nat Mater, 2020, 19(3): 338–346.
[30] [30] GOMEZ M A, GRIFFIN M A, JINDAL S, et al. The effect of octahedral tilting on proton binding sites and transition states in pseudo-cubic perovskite oxides[J]. J Chem Phys, 2005, 123(9): 094703.
[31] [31] TOYOURA K, MENG W J, HAN D L, et al. Preferential proton conduction along a three-dimensional dopant network in yttrium-doped Barium zirconate: A first-principles study[J]. J Mater Chem A, 2018, 6(45): 22721–22730.
[32] [32] YAMAZAKI Y, KUWABARA A, HYODO J, et al. Oxygen affinity: The missing link enabling prediction of proton conductivities in doped Barium zirconates[J]. Chem Mater, 2020, 32(17): 7292–7300.
[33] [33] WANG S, SHEN J X, ZHU Z W, et al. Further optimization of Barium cerate properties via co-doping strategy for potential application as proton-conducting solid oxide fuel cell electrolyte[J]. J Power Sources, 2018, 387: 24–32.
[34] [34] FABBRI E, BI L, TANAKA H, et al. Chemically stable Pr and Y co-doped barium zirconate electrolytes with high proton conductivity for intermediate-temperature solid oxide fuel cells[J]. Adv Funct Mater, 2011, 21(1): 158–166.
[35] [35] FABBRI E, MARKUS I, BI L, et al. Tailoring mixed proton-electronic conductivity of BaZrO3 by Y and Pr co-doping for cathode application in protonic SOFCs[J]. Solid State Ion, 2011, 202(1): 30–35.
[36] [36] XIE H X, WEI Z H, YANG Y, et al. New Gd?Zn co-doping enhanced mechanical properties of BaZrO3 proton conductors with high conductivity for IT-SOFCs[J]. Mater Sci Eng B, 2018, 238–239: 76–82.
[37] [37] YAMAZAKI Y, BABILO P, HAILE S M. Defect chemistry of yttrium-doped Barium zirconate: A thermodynamic analysis of water uptake[J]. Chem Mater, 2008, 20(20): 6352–6357.
[38] [38] HE S C, DAI H L, BI L. Protonic SOFCs with a novel La0.4K0.1Ca0.5MnO3?δ cathode[J]. Ceram Int, 2022, 48(23): 35599–35605.
[39] [39] XU Y S, XU X, BI L. A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells[J]. J Adv Ceram, 2022, 11(5): 794–804.
[40] [40] XU Y S, XU X, CAO N, et al. Perovskite ceramic oxide as an efficient electrocatalyst for nitrogen fixation[J]. Int J Hydrog Energy, 2021, 46(17): 10293–10302.
[41] [41] XU Y S, LIU X H, CAO N, et al. Defect engineering for electrocatalytic nitrogen reduction reaction at ambient conditions[J]. Sustain Mater Technol, 2021, 27: e00229.
[42] [42] YU S F, WANG Y, BI L. Tailoring BaCe0.8Y0.2O3 proton-conducting oxide with U ions for an enhanced stability[J]. Ceram Int, 2022, 48(12): 17987–17993.
[43] [43] AHMED I, ERIKSSON S G, AHLBERG E, et al. Structural study and proton conductivity in Yb-doped BaZrO3[J]. Solid State Ion, 2007, 178(7/10): 515–520.
[44] [44] UTHAYAKUMAR A, KAVITHANJALI M, SANDHYA K, et al. The rare earth dopant (La, Gd, Sm & Y) modulated grain boundary energy barrier suppression in BaZrO3?BaCeO3 solid solution[J]. J Alloys Compd, 2021, 864: 158098.
[45] [45] BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Sci Adv, 2019, 5(2): eaav0693.
[46] [46] UTHAYAKUMAR A, PANDIYAN A, KRISHNA MOORTHY S B. Yttrium dependent space charge effect on modulating the conductivity of Barium zirconate electrolyte for solid oxide fuel cell[J]. Int J Hydrog Energy, 2018, 43(52): 23488–23499.
[47] [47] SHI F, DONG H L, LIU Q, et al. Investigation and theoretical calculation of the lattice vibrational spectra of BaZrO3 ceramic[J]. J Mater Sci: Mater Electron, 2017, 28(4): 3467–3473.
[48] [48] RAJENDRAN S, THANGAVEL N K, DING H P, et al. Tri-doped BaCeO3–BaZrO3 as a chemically stable electrolyte with high proton-conductivity for intermediate temperature solid oxide electrolysis cells (SOECs)[J]. ACS Appl Mater Interfaces, 2020, 12(34): 38275–38284.
[49] [49] GUPTA S K, PATHAK N, KADAM R M. An efficient gel-combustion synthesis of visible light emitting Barium zirconate perovskite nanoceramics: Probing the photoluminescence of Sm3+and Eu3+doped BaZrO3[J]. J Lumin, 2016, 169: 106–114.
[50] [50] CHEN T, MENG J, LIN Q Y, et al. One-step synthesis of hollow BaZrO3 nanocrystals with oxygen vacancies for photocatalytic hydrogen evolution from pure water[J]. J Alloys Compd, 2019, 780: 498–503.
[51] [51] LOUREIRO F J A, NASANI N, REDDY G S, et al. A review on sintering technology of proton conducting BaCeO3?BaZrO3 perovskite oxide materials for Protonic Ceramic Fuel Cells[J]. J Power Sources, 2019, 438: 226991.
[52] [52] ZHU Z W, SUN W P, DONG Y C, et al. Evaluation of hydrogen permeation properties of Ni-Ba(Zr0.7Pr0.1Y0.2)O3?δ cermet membranes[J]. Int J Hydrog Energy, 2014, 39(22): 11683–11689.
[53] [53] LIU Y, RAN R, TADE M O, et al. Structure, sinterability, chemical stability and conductivity of proton-conducting BaZr0.6M0.2Y0.2O3?δ electrolyte membranes: The effect of the M dopant[J]. J Membr Sci, 2014, 467: 100–108.
[54] [54] YAMAZAKI Y, HERNANDEZ-SANCHEZ R, HAILE S M. Cation non-stoichiometry in yttrium-doped Barium zirconate: Phase behavior, microstructure, and proton conductivity[J]. J Mater Chem, 2010, 20(37): 8158–8166.
[55] [55] KREUER K D. Proton-conducting oxides[J]. Annu Rev Mater Res, 2003, 33: 333–359.
[56] [56] NORBY T, LARRING Y. Concentration and transport of protons in oxides[J]. Curr Opin Solid State Mater Sci, 1997, 2(5): 593–599.
[57] [57] QI X W, LIN Y S. Electrical conduction and hydrogen permeation through mixed proton-electron conducting strontium cerate membranes[J]. Solid State Ion, 2000, 130(1/2): 149–156.
[58] [58] NORBY T. Solid-state protonic conductors: Principles, properties, progress and prospects[J]. Solid State Ion, 1999, 125(1/4): 1–11.
[59] [59] COORS W G, READEY D W. Proton conductivity measurements in yttrium Barium cerate by impedance spectroscopy[J]. J Am Ceram Soc, 2002, 85(11): 2637–2640.
[60] [60] MAEKAWA H, UKEI Y, MOROTA K, et al. High temperature proton NMR study of yttrium doped barium cerates[J]. Solid State Commun, 2004, 130(1/2): 73–77.
[61] [61] KüNSTLER K, LANG H J, MAIWALD A, et al. Synthesis, structure and electrochemical properties of In-doped BaCeO3[J]. Solid State Ion, 1998, 107(3/4): 221–229.
[62] [62] WANG W S, VIRKAR A V. Ionic and electron-hole conduction in BaZr0.93Y0.07O3?δ by 4-probe dc measurements[J]. J Power Sources, 2005, 142(1/2): 1–9.
[63] [63] SONG S J, LEE T H, WACHSMAN E D, et al. Defect structure and transport properties of Ni–SrCeO3–δ cermet for hydrogen separation membrane[J]. J Electrochem Soc, 2005, 152(11): J125.
[64] [64] ESCOLáSTICO S, SOLíS C, SERRA J M. Hydrogen separation and stability study of ceramic membranes based on the system Nd5LnWO12[J]. Int J Hydrog Energy, 2011, 36(18): 11946–11954.
[65] [65] ESCOLáSTICO S, SOLíS C, SERRA J M. Study of hydrogen permeation in (La5/6Nd1/6)5.5WO12?δ membranes[J]. Solid State Ion, 2012, 216: 31–35.
[66] [66] ESCOLáSTICO S, IVANOVA M, SOLíS C, et al. Improvement of transport properties and hydrogen permeation of chemically-stable proton-conducting oxides based on the system BaZr1?x?yYxMyO3?δ[J]. RSC Adv, 2012, 2(11): 4932–4943.
[67] [67] XING W, SYVERTSEN G E, GRANDE T, et al. Hydrogen permeation, transport properties and microstructure of Ca-doped LaNbO4 and LaNb3O9 composites[J]. J Membr Sci, 2012, 415–416: 878–885.
[68] [68] FANG S M, BI L, YANG C L, et al. H2S poisoning and regeneration of Ni-BaZr0.1Ce0.7Y0.2O3?δ at intermediate temperature[J]. J Alloys Compd, 2009, 475(1/2): 935–939.
[69] [69] MENG B, WANG H N, CHENG H D, et al. Hydrogen permeation performance of dual-phase protonic-electronic conducting ceramic membrane with regular and independent transport channels[J]. Sep Purif Technol, 2019, 213: 515–523.
[70] [70] ZHANG D D, ZHANG X Z, ZHOU X J, et al. Phase stability and hydrogen permeation performance of BaCo0·4Fe0.4Zr0.1Y0.1O3?δ ceramic membranes[J]. Ceram Int, 2022, 48(7): 9946–9954.
[71] [71] DAI Z J. Ni-bzcyyb hydrogen separation membrane for the integration of hydrogen production and hydrogen separation by ethanol reforming[J]. Ceram Silikaty, 2022: 29–36.
[72] [72] WANG T L, FAN Z, WANG S F, et al. One-step thermal processing of BaCe0.8Y0.2O3?δ hydrogen permeable multichannel hollow fiber membrane[J]. AlChE J, 2022, 68(6): e17607.
[73] [73] TAN X H, SHEN Z F, BOKHARI A, et al. Effect of Co2O3 as sintering aid on perovskite BaCe0.8Y0.2O3?δ proton conductive membrane for hydrogen separation[J]. Int J Hydrog Energy, 2023, 48(68): 26551–26558.
[74] [74] XU X F, CHENG H W, LIU Y B, et al. Oxygen permeability and stability of dual-phase Ce0.85Pr0.15O2?δ-Pr0.6Sr0.4Fe0.9Al0.1O3?δ membrane for hydrogen production by water splitting[J]. Int J Hydrog Energy, 2021, 46(54): 27307–27318.
[75] [75] KREUER K D, DIPPEL T, BAIKOV Y M, et al. Water solubility, proton and oxygen diffusion in acceptor doped BaCeO3: A single crystal analysis[J]. Solid State Ion, 1996, 86–88: 613–620.
[76] [76] TAO Z T, YAN L T, QIAO J L, et al. A review of advanced proton-conducting materials for hydrogen separation[J]. Prog Mater Sci, 2015, 74: 1–50.
[77] [77] GUAN J, DORRIS S E, BALACHANDRAN U. Transport properties of SrCe0.95Y0.05O3?δ and its application for hydrogen separation[J]. Solid State Ion, 1998, 110(3/4): 303–310.
[78] [78] KANNAN R, SINGH K, GILL S, et al. Chemically stable proton conducting doped BaCeO3-No more fear to SOFC wastes[J]. Sci Rep, 2013, 3: 2138.
Get Citation
Copy Citation Text
WANG Jing, YANG Chunli, ZHANG Hao, SHEN Qingtao, CAO Weiji, LI Jun, YAO Wei, WANG Lei. Electrochemical Properties of BaZr0.76-xY0.2PrxNi0.04O3-δ Proton Conductors[J]. Journal of the Chinese Ceramic Society, 2023, 51(12): 3083
Received: Feb. 21, 2023
Accepted: --
Published Online: Jan. 19, 2024
The Author Email:
CSTR:32186.14.