This review paper has been written with the assumption that the readers are primarily laser scientists who would like an overview of the various optimizations and design constraints for the laser that would be used in a laser fusion power plant.
High Power Laser Science and Engineering, Volume. 1, Issue 1, 01000002(2013)
Laser requirements for a laser fusion energy power plant
We will review some of the requirements for a laser that would be used with a laser fusion energy power plant, including frequency, spatial beam smoothing, bandwidth, temporal pulse shaping, efficiency, repetition rate, and reliability. The lowest risk and optimum approach uses a krypton fluoride gas laser. A diode-pumped solid-state laser is a possible contender.
1. Introduction
This review paper has been written with the assumption that the readers are primarily laser scientists who would like an overview of the various optimizations and design constraints for the laser that would be used in a laser fusion power plant.
In 1971–1972, scientists at Lawrence Livermore National Laboratory publicly proposed a new concept, called laser fusion, as a long-term option to generate electric power[
This concept was very attractive. There was no need for high magnetic fields to confine the plasma. The confinement was just the inertia of the compressed fuel. There would also be no need for an ultra-high vacuum in the target chamber, and the chamber walls would be far from the hot plasma for easier maintenance. The complex high-technology laser could even be located in a separate building, away from the radioactive environment, for easier maintenance.
Sign up for High Power Laser Science and Engineering TOC Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
The development costs can also be advantageous, if the program is properly structured. The laser consists of 40–60 or more identical beam lines. All of the laser development can be done on one beam line, which when perfected can then be duplicated. If testing shows that the target design needs to be modified, it is a small component of the total cost, and it can be modified while using the same laser system and chamber. Because the target chamber is basically a thick wall sphere, it would be relatively easy to change, modify, or replace compared to a magnetic fusion chamber with its complex intertwined magnets. Because this concept is modular and separable, optimization would be faster and not require a series of major investments.
There were four potential problems with the target performance in this fusion concept: (1) laser–plasma instabilities; (2) asymmetric laser illumination; (3) hydrodynamic instabilities during the shell implosion; and (4) insufficient target energy gain. It was soon discovered that solving these four problems was more challenging than had been originally expected. Now, after decades of research by a broad scientific community, and after various inventions and design changes, these four fundamental problems may all have been solved. There are still some uncertainties in the target physics that will be described below. However, the risk is now low enough, and the overall concept is attractive enough, that it is time to significantly increase the program level of effort. Then the remaining uncertainties in the target and the laser performance can be confronted, and perhaps resolved. If successful, the next step would address the remaining issues in the engineering, in fusion materials, and operational issues[
A nice feature of the solutions of the above four problems is that the target design has been kept simple. The additional requirements are mostly in the laser system. The concept is still to use small spherical balls of nearly pure DT launched into the middle of a large empty chamber. It is the inherent simplicity of this fusion target which makes it so attractive as a long-term solution to the need for carbon-free electrical energy.
Why is target simplicity so important? First, because the plasma physics, the hydrodynamics, and the radiation flow all interact, and all have important physics in several time and/or space scales. Their behavior cannot be fully calculated, or even easily measured. Thus, adding physical complexity to the target, such as any type of non-symmetric target, adds to the risk of failure. Second, some types of geometric complexity (especially ‘indirect-drive’ targets) can reduce the coupling efficiency of the laser energy to the DT fuel. This would reduce the energy gain of the target, and thus the economic value of the system. Third, complex targets would cost more to manufacture. Fourth, complex targets with significant quantities of higher-
The solutions to the above target physics problems were instead mostly solved via a set of restrictions on the laser system. First, there was a shift to a higher laser frequency (shorter laser wavelength), from the infrared to the ultraviolet. This both reduced the risk of laser–plasma instabilities and increased the energy coupling efficiency[
2. Target design
Figure
Inside the frozen DT fuel shell there is DT gas, in equilibrium with the frozen DT. Except for the addition of the low-density CH foam and the thin CH and Au/Pd coatings, the target is still mostly DT, as in the 1971–1972 target concept. The specific dimensions of each layer depend upon the laser energy and wavelength, the target smoothness, and on various other optimizations that are chosen to minimize the risks of laser–plasma and hydrodynamic instabilities. As an example, with a 0.5 MJ laser the total target radius is approximately 1 mm.
This modern target can operate in different physical modes[
To compare target performance using a DPSSL (diode-pumped solid-state laser) instead of a KrF laser, it is important to use the same computer target design code, with the same physics, and to determine which physical parameters to vary and which to hold fixed. For a fair comparison, the DPSSL laser pulse shape was adjusted to produce as closely as possible the same drive pressure as the KrF laser. This should produce other physical parameters (compressed areal mass, shock timing, adiabat, and pellet yield) that are as similar as possible. The KrF design utilizes optical ‘zooming’ in which the focal spot size is reduced during the implosion to minimize refractive losses. Zooming is difficult and costly with a DPSSL, but not impossible. Thus two calculations were performed for the DPSSL, with and without zooming. The results are shown in Table
|
The penalty for using this slightly longer wavelength laser can be considerable. Even if zooming is invoked, almost twice as much laser energy is required at the
Typical laser pulse shapes are shown in Figure
A long list of possible laser–plasma instabilities has been investigated[
There are two laser–plasma interactions that could possibly be a problem for spherical targets with direct illumination. Their risk in still uncertain.
The first concern is the two-plasmon decay instability. This mode transfers some of the laser energy into two electron plasma waves:
The second concern is called cross-beam energy transfer (CBET)[
There are techniques that may control these two laser–plasma instabilities so that they would not prevent a successful implosion. Control would use a combination of a short laser wavelength and a broad laser bandwidth with beam smoothing. These techniques will be discussed further in Section
3. Laser requirements
Laser wavelength
When laser light propagates in a plasma, the dielectric constant is given by
Laser light is absorbed in the plasma by electron–ion collisions. With a higher frequency laser, the light can penetrate into higher plasma densities. Absorption of the laser power at a higher plasma density implies a lower plasma temperature. The combination of higher density and lower temperature leads to a higher percentage of light absorption, and a lower percentage of refractive losses. It also implies a higher ablation pressure. Therefore, to implode the same amount of DT fuel with the same pressure, one would need less laser energy when using a shorter wavelength. This implies a higher energy gain.
When the laser fusion concept was first proposed, the thought was to use infrared laser light. However, this long laser wavelength excited plasma instabilities near the critical density. By shifting from 1
There is a second advantage to a higher laser frequency that is even more important: the control of laser–plasma instabilities in the underdense plasma. The ponderomotive force driving these instabilities decreases, and the plasma pressure resisting the force increases, as the frequency increases. Also, since higher laser frequencies couple to the plasma at a higher density, there is more collisional damping. The net effect is that the laser intensity threshold for many of these instabilities increases linearly with the laser frequency.
The third basic advantage of a shorter laser wavelength is an increase in the mass ablation rate. The growth rate of the Rayleigh–Taylor hydrodynamic instability is reduced by mass ablation, as the unstable fluid waves are convected away from the ablation interface. Shortening the laser wavelength increases the mass ablation rate, and this reduces the Rayleigh–Taylor growth rate.
Laser beam smoothing and broad bandwidth
At the beginning of the laser fusion program there was one major advantage to the use of an infrared laser wavelength. Large laser systems all have inherent phase distortions, which produce unacceptable intensity hot spots at the focus; the peak-to-average intensity ratio is typically 10 to 1. To produce a stable and symmetric implosion, the pressure nonuniformity has to be reduced a factor of 1000, to about 1%. In the original concept, sideways thermal conduction in the plasma corona surrounding the target would smooth out the pressure nonuniformity. Depositing the laser energy at a sufficiently low density, so that there would be a sufficiently thick plasma corona for thermal smoothing, requires infrared lasers. For many years there was a fundamental conflict in the direct-illumination fusion concept. Control of laser–plasma instabilities required a short laser wavelength, while control of the laser nonuniformity required a long laser wavelength.
This conflict was finally resolved with the invention of optical smoothing techniques: first induced spatial incoherence (ISI)[
A KrF gas laser can produce a bandwidth of 3 THz. It has been shown on the Omega laser that 1.0 THz can be obtained at the third-harmonic. DPSSLs can also be designed with a crystalline lasing medium instead of glass. Crystals are attractive for a DPSSL power plant because they have a higher inherent laser efficiency, but have much less bandwidth than glass. Overlapping many laser beams, each with a different central frequency, is not geometrically or physically equivalent to a single laser beam with a broad laser bandwidth.
The two optical smoothing techniques, ISI and SSD, are fundamentally different in the way they work, yet their impacts on the target are very similar, if the bandwidth is the same. There are however a few differences that may be important. ISI creates statistically independent beamlets, and their overlapping interference pattern is truly random. SSD however creates a periodic modulation, and there is some residual interference pattern even with time averaging, especially in the longest transverse modes that approach the overall focal spot size.
During most of the laser pulse, there is a plasma corona that provides some additional thermal smoothing of the residual laser nonuniformities. However, when there is a rapid increase in the laser intensity, then the plasma corona is not in equilibrium with the laser intensity and the target is most vulnerable to laser imprinting. This rapid change occurs during the initial short prepulse; again at the beginning of the compression pulse; and again during the final ignitor pulse that is used with the ‘shock-ignition’ target. Thus the safest strategy would be to maintain the broadest possible laser bandwidth during the entire laser pulse. If there is insufficient laser bandwidth, and the target fails to ignite, any other optimization parameter becomes irrelevant.
A large
Beam smoothing may also have a positive impact on cross-beam energy transfer, although it has not yet been experimentally demonstrated. As in the case of stimulated Brillouin scattering[
There is a similar potential, also not yet demonstrated, for the two-plasmon decay instability. If the laser bandwidth exceeds the growth rate of this instability, then the instability should not develop. This stabilization is most likely when the instability is near its laser intensity threshold value and the growth rate is minimal. This provides to other reason to use a KrF laser: both a larger laser bandwidth and a target design that is closer to the instability threshold.
There is one other nice advantage of optical beam smoothing[
With SSD, the optical smoothing technique used with glass lasers, optical zooming is more difficult, since SSD is not an optical imaging system. One could devote different spatial sections of each laser beam to different temporal components of the laser pulse, but that would require double or triple the cross-sectional area of the optics and thus add significant capital cost.
Laser intensity
If the best current fusion target designs are slightly above threshold for a laser–plasma instability, then the following question naturally arises: why not simply adjust the target design by lowering the laser intensity? This can be most easily explained using the relation
Laser spatial profile
Optical beam smoothing can reduce the nonuniformities in each laser beam to an acceptable level. But that only addresses the high-mode spherical nonuniformities. Can a finite number of even perfect laser beams produce sufficiently low-mode symmetric illumination on a sphere?
The short explanation is to imagine a spherical coordinate system with its origin at the center of the spherical target, and imagine then a single laser beam with uniform intensity that is propagating inward along the
Laser pulse shaping
Glass laser media have a long inversion time and they are thus a good energy storage system for lasing. One can easily calculate the effects of saturation on the pulse shape and construct the temporal shape at the oscillator that will produce the desired profile at the end of the laser chain. With careful tuning, one can produce pulses with the required dynamic range of about 100.
However, the KrF excited-state molecule has an inversion time of only a few nanoseconds, and it is not a good storage system. The lasing medium has a high-gain coefficient and must be optically loaded continuously to keep it from self-oscillating. The laser also operates most efficiently in large systems when it is pumped by electron beams for a fraction of a microsecond, much longer than the inversion time. The required output pulse, with pulse shaping, is obtained by putting a consecutive series of pulses through the amplifiers at slightly different angles and times, and then restacking them to simultaneously arrive at the fusion target[
Laser repetition rate
For any fixed laser energy output per pulse, and fixed chamber diameter, the cost of electricity would be minimized by operating at the highest possible repetition rate. This repetition rate is probably limited by the ability to clear debris from the chamber and to remove waste heat from the laser. The current assumption is that the repetition rate will be five to ten pulses per second.
Laser reliability
Five pulses per second equals 158 million shots per year. To minimize down-time and maintenance costs, it would be desirable for the laser and the target chamber to operate five years between major maintenance. However that does not now seem realistic. We recommend a goal of one year, or about 150 million shots between major maintenance.
Laser efficiency and capital costs
To produce electricity at an attractive cost, a reasonable assumption has been
As part of the US High Average Power Laser program, the Mercury DPSSL achieved an efficiency of 5% at the fundamental laser wavelength of
One interesting reactor scenario, using a KrF laser with a shock-ignition target, and assuming some degradation from the predicted 1D target performance in Figure
KrF laser energy: 0.7 MJ
Repetition rate: 5 pps
KrF laser efficiency:
Target energy gain:
Blanket burnup gain
Thermal to electric conversion: 40%
Total electrical power output: 231 MWe
Recirculated electricity for the laser: 50 MWe
Power to the grid: 181 MWe (minus auxiliary plant requirements)
Cost per DT target[
There are various advantages to this modest-sized 181 MWe power plant, versus the few-thousand MWe typically proposed for a magnetic fusion power plant. (1) A lower total investment to develop and test the concept, combined with the lower development costs associated with developing a modular separable system. (2) A lower initial investment by industry as they evaluate the lifetime costs of this new technology. (3) Less reduction of peak electrical power output during shut downs of individual units. (4) More rapid construction times.
Status of KrF laser drivers
Development of electron beam pumped KrF lasers for IFE has been carried out both on Electra and Nike lasers at NRL. Nike is a 3000–5000 J single-pulse system that has been used to develop large-area electron beams at a size comparable to that envisioned for a full-scale reactor-grade amplifier. Electra is a 700 J laser that is being used to develop technologies that can meet the fusion energy requirements for rep-rate, efficiency, durability, and cost. The technologies developed on Electra are scalable to a full-scale (15–30 kJ) amplifier. A photo of Electra appears in Figure
Nike is the world’s largest KrF laser. It produces 2–3 kJ of laser light on target in routine operation. The laser beam has very high quality illumination on target (time-averaged nonuniformity
The Electra KrF laser runs at 2.5–5 Hz and produces between 300 and 700 J per pulse in an oscillator mode. Based on experimental results with the individual components, a fusion energy class KrF laser is predicted to have a wall plug to laser light on target efficiency in excess of 7%[
Electra has run continuously as a laser for 10 hours at 2.5 Hz. It has also run for 50,000 pulses in two contiguous runs at 5 Hz (a total of 2 hours and 47 minutes). Over 320,000 laser pulses were taken in an 8-day period. The continuous run lifetime is now largely limited by erosion of the spark-gap-based pulsed power that drives the electron beams. An all solid-state system has been developed to replace this spark-gap system. It is based on components that have demonstrated lifetimes in excess of 300,000,000 pulses. A 180 kV, 5 kA subscale demonstrator (
To summarize the status: using a scalable demonstration, a KrF laser has been shown to meet the fusion energy requirements for repetition rate, beam smoothing, wavelength, and bandwidth. Based on the experimental results, an IFE size system is expected to meet the efficiency requirements. It is expected that incorporation of an all solid-state pulsed power system would make significant advances towards meeting the durability requirements.
[2] S. P. Obenschain, J. D. Sethian, A. J. Schmitt. Fusion Sci. Technol., 56, 594(2009).
[3] C. Max. Comm. Plasma Phys. Contro. Fusion., 5, 239(1980).
[9] R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, A. A. Solodov. Phys. Rev. Lett.(2007).
[11] E. Stephens. Fusion Sci. Technol., 43(2003).
[13] W. L. Kruer. The Physics of Laser Plasma Interactions(1988).
[17] R. H. Lehmberg, J. Goldhar. Fusion Technol., 11, 532(1987).
[21] J. A. Hanlon, J. McLeod. Fusion Tech., 11, 634(1987).
[25] R. Deri, J. Geske, M. Kanshar, S. Patterson, G. Kim, Q. Hartmann, F. Leibreich, E. Deichsel, J. Ungar, P. Thiagarajan, R. Martinsen, P. Leisher, E. Stephens, J. Harrison, C. Ghosh, O. Rabot, A. Kohl. , , , , , , , , , , , , , , , , and , Semiconductor laser diode pumps for inertial fusion energy lasers, Lawrence Livermore National Laboratory Report UCRL-TR-465931 ().(2011).
[27] P. M. Burns, M. Myers, J. D. Sethian, M. F. Wolford, J. L. Giuliani, R. H. Lehmberg, M. Friedman, F. Hegeler, R. Jaynes, S. Abdel-Khalik, D. Sadowski, K. Schoonover. Fusion Sci. Technol., 56, 346(2009).
Get Citation
Copy Citation Text
Stephen E. Bodner, Andrew J. Schmitt, John D. Sethian. Laser requirements for a laser fusion energy power plant[J]. High Power Laser Science and Engineering, 2013, 1(1): 01000002
Category: review
Received: Aug. 27, 2012
Accepted: Oct. 8, 2012
Published Online: Jul. 17, 2013
The Author Email: Stephen E. Bodner (bodners@icloud.com)