Optics and Precision Engineering, Volume. 19, Issue 10, 2507(2011)
Automatic identification of vulnerable plaques based on intravascular ultrasound images
[1] [1] NAGHAVI M, LIBBY P, FALK E, et al.. From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part I [J]. Circulation, 2003,108(14): 1664-1672.
[2] [2] WAXMAN S, ISHIBASHI F, MULLER J E. Detection and treatment of vulnerable plaques and vulnerable patients: Novel approaches to prevention of coronary events [J]. Circulation, 2006,114(22): 2390-2411.
[3] [3] GIL D, HERNANDEZ A, RODRIGUEZ O, et al.. Statistical strategy for anisotropic adventitia modelling in IVUS [J]. IEEE Transactions on Medical Imaging, 2006, 25(6): 768-778.
[4] [4] BOVENKAMP E G P, DIJKSTRA J, BOSCH J G, et al.. Multi-agent segmentation of IVUS images [J]. Pattern Recognition, 2004, 37(4): 647-663.
[5] [5] GIANNOGLOU G D, CHATZIZISIS Y S, KOUTKIAS V, et al.. A novel active contour model for fully automated segmentation of intravascular ultrasound images: In vivo validation in human coronary arteries [J]. Computers in Biology and Medicine, 2007,37(9): 1292-1302.
[6] [6] GE J, CHIRILLO F, SCHWEDTMANN J, et al.. Screening of ruptured plaques in patients with coronary artery disease by intravascular ultrasound [J]. Heart, 1999,81(6): 621-627.
[7] [7] YAMAGISHI M, TERASHIMA M, AWANO K, et al.. Morphology of vulnerable coronary plaque: Insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome [J]. Journal of the American College of Cardiology, 2000,35(1): 106-111.
[8] [8] LIANG Y, ZHU H, FRIEDMAN M H. The correspondence between coronary arterial wall strain and histology in a porcine model of atherosclerosis [J]. Physics in Medicine and Biology, 2009, 54(18): 5625-5641.
[12] [12] PO D D, DO M N. Directional multiscale modeling of images using the contourlet transform [J]. IEEE Transactions on Image Processing, 2006,15(6): 1610-1620.
[13] [13] ZHANG Q, WANG Y, WANG W, et al.. Automatic segmentation of calcifications in intravascular ultrasound images using snakes and the contourlet transform [J]. Ultrasound in Medicine and Biology, 2010,36(1): 111-129.
[14] [14] BERGLUND H, LUO H, NISHIOKA T, et al.. Highly localized arterial remodeling in patients with coronary atherosclerosis : An intravascular ultrasound study [J]. Circulation, 1997,96(5): 1470-1476.
[15] [15] HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification [J]. IEEE Transactions on Systems, Man and Cybernetics, 1973,3(6): 610-621.
[17] [17] BIAN Z, ZHANG X, et al.. Pattern recognition [M]. Beijing: Tsinghua University Press,2000.(in Chinese)
[18] [18] SCHNEIDER P, BUNTE K, STIEKEMA H, et al.. Regularization in matrix relevance learning [J]. Neural Networks, IEEE Transactions on, 2010,21(5): 831-840.
[19] [19] WANG Z Y, ZHANG M, ZHANG Y, et al.. Primary study of carotid atherosclerosis plaque biomechnics using ultrasonic velocity vector imaging in patients with coronary artery disease [J]. Chinese Journal of Ultrasonography, 2009,18(1): 27-30.(in Chinese)
Get Citation
Copy Citation Text
ZHANG Qi, WANG Yuan-yuan, MA Jian-ying, QIAN Ju-ying, SHI Jun, YAN Zhuang-zhi. Automatic identification of vulnerable plaques based on intravascular ultrasound images[J]. Optics and Precision Engineering, 2011, 19(10): 2507
Category:
Received: Dec. 13, 2010
Accepted: --
Published Online: Nov. 9, 2011
The Author Email: Qi ZHANG (zhangq@shu.edu.cn)