Matter and Radiation at Extremes, Volume. 6, Issue 2, 026901(2021)

Ionic self-diffusion coefficient and shear viscosity of high-Z materials in the hot dense regime

Yong Hou1,a)... Yang Jin1, Ping Zhang1, Dongdong Kang1, Cheng Gao1, Ronald Redmer2, and Jianmin Yuan13 |Show fewer author(s)
Author Affiliations
  • 1Department of Physics, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, People’s Republic of China
  • 2Institute of Physics, University of Rostock, A.-Einstein-Strasse 23–24, D-18059 Rostock, Germany
  • 3Graduate School, China Academy of Engineering Physics, Beijing 100193, People’s Republic of China
  • show less
    References(72)

    [1] V. N. Goncharov, S. P. Regan, T. C. Sangster et al. The National direct-drive inertial confinement fusion program. Nucl. Fusion, 59, 032007(2019).

    [2] T. S. Duffy, R. F. Smith. Ultra-high pressure dynamic compression of geological materials. Front. Earth Sci., 7, 23(2019).

    [3] M. P. Desjarlais, M. D. Knudson, R. W. Lemke et al. Probing the interiors of the ice giants: Shock compression of water to 700 GPa and 3.8 g/cm3. Phys. Rev. Lett., 108, 091102(2012).

    [4] J. H. Eggert, D. G. Hicks, D. C. Swift et al. Mass-radius relationships for exoplanets. Astrophys. J., 744, 59(2012).

    [5] H. B. Cai, F. Zhang, W. M. Zhou et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets. Nat. Phys., 16, 810(2020).

    [6] R. P. Drake, B. A. Remington, D. D. Ryutov. Experimental astrophysics with high power lasers and Z pinches. Rev. Mod. Phys., 78, 755(2006).

    [7] D. Batani, M. Koenig, J. L. Miquel et al. Development of the PETawatt Aquitaine laser system and new perspectives in physics. Phys. Scr., T161, 014016(2014).

    [8] E. M. Campbell, W. J. Hogan. The national ignition facility-applications for inertial fusion energy and high-energy-density science. Plasma Phys. Control. Fusion, 41, B39(1999).

    [9] P. Arnault, J. A. Gaffney, S. X. Hu et al. A review of equation-of-state models for inertial confinement fusion materials. High Energy Density Phys., 28, 7-24(2018).

    [10] A. L. Kritcher, M. E. Martin, J. Nilsen et al. Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100 s of Mbar using spherically converging shock waves in a NIF hohlraum. Matter Radiat. Extremes, 5, 018401(2020).

    [11] H. Liu, H. Song, Q. Zhang et al. Validation for equation of state in wide regime: Copper as prototype. Matter Radiat. Extremes, 1, 123(2016).

    [12] S. D. Baalrud, S. D. Bergeson, C. L. Ellison et al. Exploring the crossover between high-energy-density plasma and ultracold neutral plasma physics. Phys. Plasmas, 26, 100501(2019).

    [13] J. Dai, Y. Hou, D. Kang et al. Equations of state and transport properties of mixtures in the warm dense regime. Phys. Plasmas, 22, 022711(2015).

    [14] L. A. Collins, J. D. Kress, E. R. Meyer, C. Ticknor. Effect of correlation on viscosity and diffusion in molecular-dynamics simulations. Phys. Rev. E, 90, 043101(2014).

    [15] S. D. Baalrud, J. Daligault. Effective potential theory for transport coefficients across coupling regimes. Phys. Rev. Lett., 110, 235001(2013).

    [16] J. S. Cohen, D. P. Kilcrease, J. D. Kress et al. Orbital-free molecular dynamics simulations of transport properties in dense-plasma uranium. High Energy Density Phys., 7, 155-160(2011).

    [17] L. B. Fletcher, E. Galtier, B. B. L. Witte et al. Warm dense matter demonstrating non-Drude conductivity from observations of nonlinear plasmon damping. Phys. Rev. Lett., 118, 225001(2017).

    [18] M. French, P. Sperling, B. B. L. Witte et al. Observations of non-linear plasmon damping in dense plasmas. Phys. Plasmas, 25, 056901(2018).

    [19] M. W. C. Dharma-wardana, D. D. Klug. Isochoric, isobaric, and ultrafast conductivities of aluminum, lithium, and carbon in the warm dense matter regime. Phys. Rev. E, 96, 053206(2017).

    [20] C. E. Starrett. Kubo-Greenwood approach to conductivity in dense plasmas with average atom models. High Energy Density Phys., 19, 58-64(2016).

    [21] W. R. Johnson, J. Nilsen. Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter. Phys. Rev. E, 93, 033205(2016).

    [22] G. Dejonghe, J. C. Pain. Electrical resistivity in warm dense plasmas beyond the average-atom model. Contrib. Plasma Phys., 50, 39-45(2010).

    [23] M. Bethkenhagen, M. Schörner, B. B. L. Witte et al. Carbon ionization at gigabar pressures: An ab initio perspective on astrophysical high-density plasmas. Phys. Rev. Res., 2, 023260(2020).

    [24] J. E. Bailey, G. P. Loisel, T. Nagayama et al. A higher-than-predicted measurement of iron opacity at solar interior temperatures. Nature, 517, 56-59(2015).

    [25] J. E. Bailey, G. P. Loisel, T. Nagayama et al. Systematic study of L-Shell opacity at stellar interior temperatures. Phys. Rev. Lett., 122, 235001(2019).

    [26] C. Gao, Y. Hou, P. Liu et al. Transient space localization of electrons ejected from continuum atomic processes in hot dense plasma. Commun. Phys., 1, 95(2018).

    [27] O. Renner, F. B. Rosmej. Challenges of x-ray spectroscopy in investigations of matter under extreme conditions. Matter Radiat. Extremes, 4, 024201(2019).

    [28] J. A. Frenje, P. E. Grabowski, A. B. Zylstra et al. Measurement of charged-particle stopping in warm dense plasma. Phys. Rev. Lett., 114, 211002(2015).

    [29] C. Deutsch. Correlated ion stopping in dense plasmas. Matter Radiat. Extremes, 4, 034201(2019).

    [30] P. Arnault, J. Clérouin, G. Robert. Behavior of the coupling parameter under isochoric heating in a high-Z plasma. Phys. Rev. E., 87, 061101(R)(2013).

    [31] P. Arnault, J. Clérouin, G. Robert. Thomas-Fermi Z-scaling laws and coupling stabilization for plasmas. Phys. Rev. E., 88, 063106(2013).

    [32] P. Arnault, J. Clérouin, L. A. Collins, J. D. Kress, G. Robert. Self-organization in dense plasmas: The Gamma-Plateau. Contrib. Plasma Phys., 55, 159-163(2015).

    [33] N. D. Mermin. Thermal properties of the inhomogeneous electron gas. Phys. Rev., 137, A1441(1965).

    [34] S. X. Hu, V. V. Karasiev, V. Recoules et al. Interspecies radiative transition in warm and superdense plasma mixtures. Nat. Commun., 11, 1989(2020).

    [35] R. Redmer, H. R. Rüter. Ab initio simulations for the ion-ion structure factor of warm dense aluminum. Phys. Rev. Lett., 112, 145007(2014).

    [36] F. Bottin, F. Lambert, S. Mazevet et al. Ab initio molecular dynamics simulations of dense boron plasmas up to the semiclassical Thomas-Fermi regime. Phys. Rev. E, 75, 056404(2007).

    [37] M. Krack, T. D. Kühne, F. R. Mohamed, M. Parrinello. Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. Phys. Rev. Lett., 98, 066401(2007).

    [38] M. P. Desjarlais. Density-functional calculations of the liquid deuterium Hugoniot, reshock, and reverberation timing. Phys. Rev. B, 68, 064204(2003).

    [39] J. Dai, J. Dai, Y. Hou, J. Yuan, Y. Hou, J. Yuan. Quantum Langevin molecular dynamic determination of the solar-interior equation of state. Astrophys. J., 721, 1158(2010).

    [40] J. Dai, Y. Hou, D. Kang et al. Structure, equation of state, diffusion and viscosity of warm dense Fe under the conditions of a giant planet core. New J. Phys., 15, 045003(2013).

    [41] W. Kang, H. Wang, S. Zhang et al. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy-From cold materials to hot dense plasmas. Phys. Plasmas, 23, 042707(2016).

    [42] J. Clérouin, F. Lambert, G. Zérah. Very-high-temperature molecular dynamics. Phys. Rev. E, 73, 016403(2006).

    [43] F. Lambert, V. Recoules. Plastic ablator and hydrodynamic instabilities: A first-principles set of microscopic coefficients. Phys. Rev. E, 86, 026405(2012).

    [44] L. Burakovsky, J. D. Kress, C. Ticknor et al. Transport properties of lithium hydride at extreme conditions from orbital-free molecular dynamics. Phys. Rev. E, 87, 023104(2013).

    [45] J. Daligault, T. Sjostrom. Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes. Phys. Rev. Lett., 113, 155006(2014).

    [46] J. Daligault, T. Sjostrom. Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory. Phys. Rev. E, 92, 063304(2015).

    [47] C. E. Starrett. Thomas-Fermi simulations of dense plasmas without pseudopotentials. Phys. Rev. E, 96, 013206(2017).

    [48] D. Saumon, C. E. Starrett. Equation of state of dense plasmas with pseudoatom molecular dynamics. Phys. Rev. E, 93, 063206(2016).

    [49] J. Daligault, D. Saumon, C. E. Starrett. Pseudoatom molecular dynamics. Phys. Rev. E, 91, 013104(2015).

    [50] Th. Bornath, R. Bredow, W.-D. Kraeft, R. Redmer. Hypernetted chain calculation fo multi-component and non-equilibrium plasmas. Contrib. Plasma Phys., 53, 276(2013).

    [51] D. O. Gericke, P. Hilse, M. Schlanges, K. Wünsch. Structure of strongly coupled multicomponent plasmas. Phys. Rev. E, 77, 056404(2008).

    [52] Th. Bornath, W.-D. Kraeft, V. Schwarz et al. Hypernetted chain calculations for two component plasmas. Contrib. Plasma Phys., 47, 324(2007).

    [53] V. Bezkrovniy, W.-D. Kraeft, D. Kremp, M. Schlanges. Reaction ensemble Monte Carlo technique and hypernetted chain approximation study of dense hydrogen. Phys. Rev. E, 69, 061204(2004).

    [54] M. Baus, J. Hansen. Statistical mechanics of simple Coulomb systems. Phys. Rep., 59, 1(1980).

    [55] Y. Fu, Y. Hou, D. Kang et al. Multi-charge-state molecular dynamics and self-diffusion coefficient in the warm dense matter regime. Phys. Plasmas, 25, 012701(2018).

    [56] Y. Hou, F. Jin, J. Yuan. Influence of the electronic energy level broadening on the ionization of atoms in hot and dense plasmas: An average atom model demonstration. Phys. Plasmas, 13, 093301(2006).

    [57] Y. Hou, F. Jin, J. Yuan. Energy level broadening effect on the equation of state of hot dense Al and Au plasma. J. Phys.: Condens. Matter, 19, 425204(2007).

    [58] R. Bredow, Y. Hou, R. Redmer, J. Yuan. Average-atom model combined with the hypernetted chain approximation applied to warm dense matter. Phys. Rev. E, 91, 033114(2015).

    [59] R. Bredow, Y. Fu, Y. Hou et al. Average-atom model for two-temperature states and ionic transport properties of aluminum in the warm dense matter regime. High Energy Density Phys., 22, 21-26(2017).

    [60] Y. Hou, J. Yuan. Alternative ion-ion pair-potential model applied to molecular dynamics simulations of hot and dense plasmas: Al and Fe as examples. Phys. Rev. E, 79, 016402(2009).

    [61] M. P. Allen, D. J. Tildesley. Computer Simulation of Liquids(1987).

    [62] J. Clérouin, J. D. Kress, D. Saumon, C. E. Starrett. The quantum hypernetted chain model of warm dense matter. High Energy Density Phys., 8, 150(2012).

    [63] S. Ichimaru, H. Iyetomi, S. Ogata. Bridge functions and improvement on the hypernetted-chain approximation for classical one-component plasmas. Phys. Rev. A, 46, 1051(1992).

    [64] A. Diaw, M. S. Murillo. A dynamic density functional theory approach to diffusion in white dwarfs and neutron star envelopes. Astrophys. J., 829, 16(2016).

    [65] P. Arnault, J. Clérouin, N. Desbiens. Parametrization of pair correlation function and static structure factor of the one component plasma across coupling regimes. Phys. Plasmas, 23, 092120(2016).

    [66] C. Deutsch, M. M. Gombert, H. Minoo. Classical modelization of symmetry effects in the dense high-temperature electron gas. Phys. Lett. A, 66, 381(1978).

    [67] J. P. Hansen, I. R. McDonald. Microscopic simulation of a hydrogen plasmas. Phys. Rev. Lett., 41, 1379(1978).

    [68] A. Esser, G. Röpke. Debye-Onsager relaxation effect in fully ionized plasmas. Phys. Rev. E, 58, 2446(1998).

    [69] P. Mabey, S. Richardson, T. G. White et al. A strong diffusive ion model in dense ionized matter predicted by Langevin dynamics. Nat. Commun., 8, 14125(2017).

    [70] A. V. Plyukhin. Generalized Fokker-Planck equation, Brownian motion, and ergodicity. Phys. Rev. E, 77, 061136(2008).

    [71] R. G. Gordon, Y. S. Kim. Theory for the forces between closed-shell atoms and molecules. J. Chem. Phys., 56, 3122(1972).

    [72] R. G. Gordon, Y. S. Kim. Theory of binding of ionic crystals: Application to alkali-halide and alkaline-earth-dihalide crystals. Phys. Rev. B, 9, 3548(1974).

    Tools

    Get Citation

    Copy Citation Text

    Yong Hou, Yang Jin, Ping Zhang, Dongdong Kang, Cheng Gao, Ronald Redmer, Jianmin Yuan. Ionic self-diffusion coefficient and shear viscosity of high-Z materials in the hot dense regime[J]. Matter and Radiation at Extremes, 2021, 6(2): 026901

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Radiation and Hydrodynamics

    Received: Aug. 25, 2020

    Accepted: Dec. 30, 2020

    Published Online: Apr. 22, 2021

    The Author Email: Hou Yong (yonghou@nudt.edu.cn)

    DOI:10.1063/5.0024409

    Topics