Journal of Inorganic Materials, Volume. 34, Issue 4, 365(2019)
[1] Y WU X, Y LUO, Y SUN M et al. Low-defect Prussian blue nanocubes as high capacity and long life cathode for aqueous Na-ion batteries. Nano Energy, 13, 117-123(2015).
[2] Y YOU, R YAO H, S XIN et al. Subzero-temperature cathode for a sodium-ion battery. Adv. Mater, 28, 7243-7248(2016).
[3] Q CHEN, S SUN, T ZHAI et al. Yolk-shell NiS2 nanoparticle- embedded carbon fibers for flexible fiber-shaped sodium battery. Adv. Energ. Mater, 8(2018).
[4] B GUO Q, F MA Y, T CHEN T et al. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS Nano, 11, 12658-12667(2017).
[5] P CAI D, H YANG X, H QU B et al. Comparison of the electrochemical performance of iron hexacyanoferrate with high and low quality as cathode materials for aqueous sodium-ion batteries. Chem. Commun, 53, 6780-6783(2017).
[6] M D°ARIENZO, R RUFFO, R SCOTTI et al. Layered Na0.71CoO2: a powerful candidate for viable and high performance Na-batteries. Phys. Chem. Chem. Phys, 14, 5945-5952(2012).
[7] R BERTHELOT, D CARLIER, C DELMAS. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nature Mater, 10, 74-80(2011).
[8] A BHIDE, K HARIHARAN. Physicochemical properties of NaxCoO2 as a cathode for solid state sodium battery. Solid State Ionics, 192, 360-363(2011).
[9] A CABALLERO, L HERNAN, J MORALES et al. Synjournal and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells. Mater. Chem, 12, 1142-1147(2002).
[10] L CAO Y, F XIAO L, W WANG et al. Reversible sodium-ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv. Mater, 23, 3155-3160(2011).
[11] H LU Y, L WANG, G CHENG J et al. Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Comm, 48, 6544-6546(2012).
[12] X HUANG Y, M XIE, T ZHANG J et al. A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries. Nano Energy, 39, 273-283(2017).
[13] Q WANG B, Y HAN, T CHEN Y et al. Gradient substitution: an intrinsic strategy towards high performance sodium storage in Prussian blue based cathodes. J. Mater. Chem. A, 6, 8947-8954(2018).
[14] Y YOU, L WU X, X YIN Y et al. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energ. Environ. Sci, 7, 1643-1647(2014).
[15] Z JIANG Y, L YU S, Q WANG B et al. Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater, 26, 5315-5321(2016).
[17] S VAUCHER, J FIELDEN, M LI et al. Molecule-based magnetic nanoparticles: synthesis of cobalt hexacyanoferrate, cobalt pentacyanonitrosylferrate, and chromium hexacyanochromate coordination polymers in water-in-oil microemulsions. Nano Lett, 2, 225-229(2002).
[18] J ZHENG X, Q KUANG, T XU et al. Growth of Prussian blue microcubes under a hydrothermal condition: possible nonclassical crystallization by a mesoscale self-assembly. J. Phys. Chem.C, 111, 4499-4502(2007).
[19] B LIM, J JIANG M, PHC CAMARGO et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science, 324, 1302-1305(2009).
[21] H REN W, S QIN M, X ZHU Z et al. Activation of sodium storage sites in Prussian blue analogues via surface etching. Nano Lett, 17, 4713-4718(2017).
Get Citation
Copy Citation Text
Yong LI, Wei-Xin HE, Xin-Yue ZHENG, Sheng-Lan YU, Hai-Tong LI, Hong-Yi LI, Rong ZHANG, Yu WANG.
Category: RESEARCH PAPER
Received: Jun. 20, 2018
Accepted: --
Published Online: Sep. 24, 2021
The Author Email: WANG Yu (wangyu@ncu.edu.cn)