Opto-Electronic Engineering, Volume. 51, Issue 8, 240071(2024)

Research progress of terahertz vector beams

Hao Hu1... Xiaoxue Hu1, Liping Gong2, Sixing Xi3 and Xiaolei Wang1,* |Show fewer author(s)
Author Affiliations
  • 1Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
  • 2School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China
  • 3School of Mathematics and Physics, Hebei University of Engineering, Handan, Hebei 056038, China
  • show less
    References(131)

    [1] G L Carr, M C Martin, W R McKinney et al. High-power terahertz radiation from relativistic electrons. Nature, 420, 153-156(2002).

    [2] K Y Kim, A J Taylor, J H Glownia et al. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nat Photonics, 2, 605-609(2008).

    [3] S Hoffmann, M R Hofmann. Generation of Terahertz radiation with two color semiconductor lasers. Laser Photonics Rev, 1, 44-56(2007).

    [4] D M Mittleman. Twenty years of terahertz imaging [Invited]. Opt Express, 26, 9417-9431(2018).

    [5] Y Kawano, K Ishibashi. An on-chip near-field terahertz probe and detector. Nat Photonics, 2, 618-621(2008).

    [6] J Federici, L Moeller. Review of terahertz and subterahertz wireless communications. J Appl Phys, 107, 111101(2010).

    [7] F Alves, D Grbovic, B Kearney et al. Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber. Opt Lett, 37, 1886-1888(2012).

    [8] P Sen, J V Siles, N Thawdar et al. Multi-kilometre and multi-gigabit-per-second sub-terahertz communications for wireless backhaul applications. Nat Electron, 6, 164-175(2023).

    [9] S Koenig, D Lopez-Diaz, J Antes et al. Wireless sub-THz communication system with high data rate. Nat Photonics, 7, 977-981(2013).

    [10] S S Dhillon, M S Vitiello, E H Linfield et al. The 2017 terahertz science and technology roadmap. J Phys D Appl Phys, 50, 043001(2017).

    [11] K B Fan, J Y Suen, X Y Liu et al. All-dielectric metasurface absorbers for uncooled terahertz imaging. Optica, 4, 601-604(2017).

    [12] X Yang, X Zhao, K Yang et al. Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol, 34, 810-824(2016).

    [13] B Wang, S C Zhong, T L Lee et al. Non-destructive testing and evaluation of composite materials/structures: a state-of-the-art review. Adv Mech Eng, 12(2020).

    [14] Y Y Cheng, Y X Wang, Y Y Niu et al. Concealed object enhancement using multi-polarization information for passive millimeter and terahertz wave security screening. Opt Express, 28, 6350-6366(2020).

    [15] N V Chernomyrdin, G R Musina, P V Nikitin et al. Terahertz technology in intraoperative neurodiagnostics: a review. Opto-Electron Adv, 6, 220071(2023).

    [16] J Wätzel, J Berakdar. Open-circuit ultrafast generation of nanoscopic toroidal moments: the swift phase generator. Adv Quantum Tech, 2, 1800096(2019).

    [17] K L Wang, D M Mittleman. Metal wires for terahertz wave guiding. Nature, 432, 376-379(2004).

    [18] J A Deibel, K L Wang, M D Escarra et al. Enhanced coupling of terahertz radiation to cylindrical wire waveguides. Opt Express, 14, 279-290(2006).

    [19] M Navarro-Cía, J Wu, H Y Liu et al. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides. Sci Rep, 6, 38926(2016).

    [20] X Y Tian, A N Ma, H F Huang et al. Three-in-one polarization detector enabled by metasurface. Phys Scr, 99, 025531(2024).

    [21] H Fujita, Y Tada, M Sato. Accessing electromagnetic properties of matter with cylindrical vector beams. New J Phys, 21, 073010(2019).

    [22] J Lamberg, F Zarrinkhat, A Tamminen et al. Wavefront-modified vector beams for THz cornea spectroscopy. Opt Express, 31, 40293-40307(2023).

    [23] J Wätzel, E Y Sherman, J Berakdar. Nanostructures in structured light: photoinduced spin and orbital electron dynamics. Phys Rev B, 101, 235304(2020).

    [24] J Wätzel, J Berakdar, E Y Sherman. Ultrafast entanglement switching and singlet-triplet transitions control via structured terahertz pulses. New J Phys, 24, 043016(2022).

    [25] K Miyamoto, B J Kang, W T Kim et al. Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate. Sci Rep, 6, 38880(2016).

    [26] L Minkevičius, D Jokubauskis, I Kašalynas et al. Bessel terahertz imaging with enhanced contrast realized by silicon multi-phase diffractive optics. Opt Express, 27, 36358-36367(2019).

    [27] A Woldegeorgis, T Kurihara, M Almassarani et al. Multi-MV/cm longitudinally polarized terahertz pulses from laser-thin foil interaction. Optica, 5, 1474-1477(2018).

    [28] F Y Yue, V Aglieri, R Piccoli et al. Highly sensitive polarization rotation measurement through a high-order vector beam generated by a metasurface. Adv Mater Technol, 5, 1901008(2020).

    [29] E A Nanni, W R Huang, K H Hong et al. Terahertz-driven linear electron acceleration. Nat Commun, 6, 8486(2015).

    [30] M T Hibberd, A L Healy, D S Lake et al. Acceleration of relativistic beams using laser-generated terahertz pulses. Nat Photonics, 14, 755-759(2020).

    [31] A Arbabi, Y Horie, M Bagheri et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol, 10, 937-943(2015).

    [32] F Zhang, M B Pu, Y H Guo et al. Synthetic vector optical fields with spatial and temporal tunability. Sci China Phys Mech Astron, 65, 254211(2022).

    [33] F Zhang, Y H Guo, M B Pu et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun, 14, 1946(2023).

    [34] Y J Bao, Y Yu, H F Xu et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light Sci Appl, 8, 95(2019).

    [35] H H Hsiao, C H Chu, D P Tsai. Fundamentals and applications of metasurfaces. Small Methods, 1, 1600064(2017).

    [36] S Lepeshov, A Gorodetsky, A Krasnok et al. Enhancement of terahertz photoconductive antenna operation by optical nanoantennas. Laser Photonics Rev, 11, 1600199(2017).

    [37] T Kampfrath, K Tanaka, K A Nelson. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat Photonics, 7, 680-690(2013).

    [38] S Winnerl, B Zimmermann, F Peter et al. Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas. Opt Express, 17, 1571-1576(2009).

    [39] K Kan, J Yang, A Ogata et al. Radially polarized terahertz waves from a photoconductive antenna with microstructures. Appl Phys Lett, 102, 221118(2013).

    [40] K J Kaltenecker, J C König-Otto, M Mittendorff et al. Gouy phase shift of a tightly focused, radially polarized beam. Optica, 3, 35-41(2016).

    [41] J Deveikis, J Lloyd-Hughes. Multi-pixel photoconductive emitters for the controllable generation of azimuthal and radial terahertz beams. Opt Express, 30, 43293-43300(2022).

    [42] S Mou, A D’Arco, L Tomarchio et al. Simultaneous elliptically and radially polarized THz from one-color laser-induced plasma filament. New J Phys, 23, 063048(2021).

    [43] B N Han, Y P Chen, T H Xia et al. Measurement and control of radially polarized THz radiation from DC-biased laser plasma filaments in air. Sensors, 22, 5231(2022).

    [44] L Z Wang, Y P Chen, G W Zhang et al. Tunable high-field terahertz radiation from plasma channels. Laser Photonics Rev, 17, 2200627(2023).

    [45] I A Nikolaeva, D E Shipilo, N A Panov et al. Terahertz beam with radial or orthogonal to laser polarization from a single-color femtosecond filament. Opt Express, 31, 41406-41419(2023).

    [46] K Jana, Y H Mi, S H Møller et al. Quantum control of flying doughnut terahertz pulses. Sci Adv, 10, eadl1803(2024).

    [47] J Pettine, P Padmanabhan, T Shi et al. Light-driven nanoscale vectorial currents. Nature, 626, 984-989(2024).

    [48] E Beaurepaire, J C Merle, A Daunois et al. Ultrafast spin dynamics in ferromagnetic nickel. Phys Rev Lett, 76, 4250-4253(1996).

    [49] E Beaurepaire, G M Turner, S M Harrel et al. Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses. Appl Phys Lett, 84, 3465-3467(2004).

    [50] Y Taira, R Kuroda, M Kumaki et al. Observation of radially polarized terahertz radiation generated by a sub-picosecond electron beam. Vib Spectrosc, 75, 162-168(2014).

    [51] Z Jin, H B Zhuo, T Nakazawa et al. Highly efficient terahertz radiation from a thin foil irradiated by a high-contrast laser pulse. Phys Rev E, 94, 033206(2016).

    [52] D Schulz, B Schwager, J Berakdar. Nanostructured spintronic emitters for polarization-textured and chiral broadband THz fields. ACS Photonics, 9, 1248-1255(2022).

    [53] G Q Chang, C J Divin, C H Liu et al. Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification. Opt Lett, 32, 433-435(2007).

    [54] R Imai, N Kanda, T Higuchi et al. Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry. Opt Express, 20, 21896-21904(2012).

    [55] Z Zheng, N Kanda, K Konishi et al. Efficient coupling of propagating broadband terahertz radial beams to metal wires. Opt Express, 21, 10642-10650(2013).

    [56] M Sato, T Higuchi, N Kanda et al. Terahertz polarization pulse shaping with arbitrary field control. Nat Photonics, 7, 724-731(2013).

    [57] G Gaborit, A Biciunas, M Bernier et al. Emitting and receiving terahertz vectorial antennas based on cubic electro-optic crystals. IEEE Trans Terahertz Sci Technol, 5, 828-835(2015).

    [58] X Feng, Q W Wang, Y C Lu et al. Direct emission of broadband terahertz cylindrical vector Bessel beam. Appl Phys Lett, 119, 221110(2021).

    [59] S Mou, A D’Arco, L Tomarchio et al. Generation of terahertz vector beam bearing tailored topological charge. APL Photonics, 8, 036103(2023).

    [60] H Iwase, S Ohno. Direct generation of a terahertz vector beam from a ZnTe crystal excited by a focused circular polarized pulse. Opt Express, 31, 26923-26934(2023).

    [61] J Kröll, J Darmo, S S Dhillon et al. Phase-resolved measurements of stimulated emission in a laser. Nature, 449, 698-701(2007).

    [62] N Jukam, S Dhillon, Z Y Zhao et al. Gain measurements of THz quantum cascade lasers using THz time-domain spectroscopy. IEEE J Sel Top Quantum Electron, 14, 436-442(2008).

    [63] N Jukam, S S Dhillon, D Oustinov et al. Investigation of spectral gain narrowing in quantum cascade lasers using terahertz time domain spectroscopy. Appl Phys Lett, 93, 101115(2008).

    [64] N Jukam, S S Dhillon, D Oustinov et al. Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers. Appl Phys Lett, 94, 251108(2009).

    [65] N Jukam, S S Dhillon, D Oustinov et al. Terahertz amplifier based on gain switching in a quantum cascade laser. Nat Photonics, 3, 715-719(2009).

    [66] D Oustinov, N Jukam, R Rungsawang et al. Phase seeding of a terahertz quantum cascade laser. Nat Commun, 1, 69(2010).

    [67] S Han, Y Chua, Y Q Zeng et al. Photonic Majorana quantum cascade laser with polarization-winding emission. Nat Commun, 14, 707(2023).

    [68] S Han, J Y Cui, Y Chua et al. Electrically-pumped compact topological bulk lasers driven by band-inverted bound states in the continuum. Light Sci Appl, 12, 145(2023).

    [69] J Y Cui, Y Chua, S Han et al. Single‐mode electrically pumped terahertz laser in an ultracompact cavity via merging bound states in the continuum. Laser Photonics Rev, 17, 2300350(2023).

    [70] N V Petrov, B Sokolenko, M S Kulya et al. Design of broadband terahertz vector and vortex beams: I. Review of materials and components. Light Adv Manuf, 3, 640-652(2022).

    [71] A Minasyan, C Trovato, J Degert et al. Geometric phase shaping of terahertz vortex beams. Opt Lett, 42, 41-44(2017).

    [72] A I Hernandez-Serrano, E Castro-Camus, D Lopez-Mago. q-plate for the generation of terahertz cylindrical vector beams fabricated by 3D printing. J Infrared Millim Terahertz Waves, 38, 938-944(2017).

    [73] X P Dong, J R Cheng, F Fan et al. Sub-terahertz wideband vector beam generator based on superwavelength lattice dielectric grating. Optik, 193, 162991(2019).

    [74] C Koral, Z Mazaheri, A Andreone. THz multi-mode Q-plate with a fixed rate of change of the optical axis using form birefringence. Micromachines, 13, 796(2022).

    [75] L Ke, S M Zhang, C X Li et al. Research progress on hybrid vector beam implementation by metasurfaces. Opto-Electron Eng, 50, 230117(2023).

    [76] Y H Guo, M B Pu, Z Y Zhao et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics, 3, 2022-2029(2016).

    [77] F Zhang, M B Pu, J Luo et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces. Opto-Electron Eng, 44, 319-325(2017).

    [78] J P B Mueller, N A Rubin, R C Devlin et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett, 118, 113901(2017).

    [79] R C Devlin, A Ambrosio, N A Rubin et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896-901(2017).

    [80] Y H Guo, S C Zhang, M B Pu et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl, 10, 63(2021).

    [81] F Zhang, Y H Guo, M B Pu et al. Metasurfaces enabled by asymmetric photonic spin-orbit interactions. Opto-Electron Eng, 47, 200366(2020).

    [82] A Papakostas, A Potts, D M Bagnall et al. Optical manifestations of planar chirality. Phys Rev Lett, 90, 107404(2003).

    [83] M Kang, J Chen, X L Wang et al. Twisted vector field from an inhomogeneous and anisotropic metamaterial. J Opt Soc Am B, 29, 572-576(2012).

    [84] Z W Xie, J W He, X K Wang et al. Generation of terahertz vector beams with a concentric ring metal grating and photo-generated carriers. Opt Lett, 40, 359-362(2015).

    [85] J Y Guo, X K Wang, J W He et al. Generation of radial polarized Lorentz beam with single layer metasurface. Adv Opt Mater, 6, 1700925(2018).

    [86] Y H Xu, H F Zhang, Q Li et al. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control. Nanophotonics, 9, 3393-3402(2020).

    [87] H X Zhou, J R Cheng, F Fan et al. Ultrathin freestanding terahertz vector beam generators with free phase modulation. Opt Express, 29, 1384-1395(2021).

    [88] T Wu, X Q Zhang, Q Xu et al. Dielectric metasurfaces for complete control of phase, amplitude, and polarization. Adv Opt Mater, 10, 2101223(2022).

    [89] Q Wu, W H Fan, C Qin. Generation and superposition of perfect vortex beams in terahertz region via single-layer all-dielectric metasurface. Nanomaterials, 12, 3010(2022).

    [90] Q S Li, X D Cai, T Liu et al. Gate-tuned graphene meta-devices for dynamically controlling terahertz wavefronts. Nanophotonics, 11, 2085-2096(2022).

    [91] H Zhao, X K Wang, S T Liu et al. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band. Opto-Electron Adv, 6, 220012(2023).

    [92] H Li, C L Zheng, J Y Liu et al. Binary encoding-inspired generation of vector vortex beams. Sci China Phys Mech Astron, 66, 254212(2023).

    [93] L Ke, C X Li, S M Zhang et al. Tight focusing field of cylindrical vector beams based on cascaded low-refractive index metamaterials. Nanophotonics, 12, 3563-3578(2023).

    [94] C L Zheng, J Li, J Y Liu et al. Creating longitudinally varying vector vortex beams with an all-dielectric metasurface. Laser Photonics Rev, 16, 2200236(2022).

    [95] J Li, J T Li, Z Yue et al. Structured vector field manipulation of terahertz wave along the propagation direction based on dielectric metasurfaces. Laser Photonics Rev, 16, 2200325(2022).

    [96] H Li, S X Duan, C L Zheng et al. Manipulation of longitudinally inhomogeneous polarization states empowered by all-silicon metasurfaces. Adv Opt Mater, 11, 2202461(2023).

    [97] H Li, S X Duan, C L Zheng et al. Longitudinal manipulation of scalar to vector vortex beams evolution empowered by all-silicon metasurfaces. Adv Opt Mater, 11, 2301368(2023).

    [98] L Luo, X Liu, S X Duan et al. Dual channel transformation of scalar and vector terahertz beams along the optical path based on dielectric metasurface. Nanophotonics, 12, 3839-3848(2023).

    [99] S S Hu, L Wei, Y Long et al. Longitudinal polarization manipulation based on all-dielectric terahertz metasurfaces. Opt Express, 32, 6963-6976(2024).

    [100] X Y He, H L Bao, F Zhang et al. Longitudinally continuous varying high-order cylindrical vector fields enabled by spin-decoupled metasurfaces. Nanophotonics, 13, 1657-1664(2024).

    [101] C F Hsieh, R P Pan, T T Tang et al. Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate. Opt Lett, 31, 1112-1114(2006).

    [102] B Piccirillo, V D'Ambrosio, S Slussarenko et al. Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate. Appl Phys Lett, 97, 241104(2010).

    [103] C S Yang, T T Tang, R P Pan et al. Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment. Appl Phys Lett, 104, 141106(2014).

    [104] P Chen, B Y Wei, W Ji et al. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings. Photonics Res, 3, 133-139(2015).

    [105] T Sasaki, H Okuyama, M Sakamoto et al. Optical control of polarized terahertz waves using dye-doped nematic liquid crystals. AIP Adv, 8, 115326(2018).

    [106] N Vieweg, C Jansen, M K Shakfa et al. Molecular properties of liquid crystals in the terahertz frequency range. Opt Express, 18, 6097-6107(2010).

    [107] L Wang, X W Lin, W Hu et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci Appl, 4, e253(2015).

    [108] C F Hsieh, C S Yang, F C Shih et al. Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate. Opt Express, 27, 9933-9940(2019).

    [109] L Wang, S J Ge, W Hu et al. Tunable reflective liquid crystal terahertz waveplates. Opt Mater Express, 7, 2023-2029(2017).

    [110] X Zhang, F Fan, C Y Zhang et al. Tunable terahertz phase shifter based on dielectric artificial birefringence grating filled with polymer dispersed liquid crystal. Opt Mater Express, 10, 282-292(2020).

    [111] Z X Shen, M J Tang, P Chen et al. Planar terahertz photonics mediated by liquid crystal polymers. Adv Opt Mater, 8, 1902124(2020).

    [112] Z X Shen, S H Zhou, S J Ge et al. Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations. Opt Lett, 43, 4695-4698(2018).

    [113] S J Ge, P Chen, Z X Shen et al. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal. Opt Express, 25, 12349-12356(2017).

    [114] S J Ge, Z X Shen, P Chen et al. Generating, separating and polarizing terahertz vortex beams via liquid crystals with gradient-rotation directors. Crystals, 7, 314(2017).

    [115] Y C Shen, Z X Shen, G Z Zhao et al. Photopatterned liquid crystal mediated terahertz Bessel vortex beam generator [Invited]. Chin Opt Lett, 18, 080003(2020).

    [116] S Savo, D Shrekenhamer, W J Padilla. Liquid crystal metamaterial absorber spatial light modulator for THz applications. Adv Opt Mater, 2, 275-279(2014).

    [117] C X Liu, F Yang, X J Fu et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals. Adv Opt Mater, 9, 2100932(2021).

    [118] O Buchnev, N Podoliak, K Kaltenecker et al. Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for THz applications. ACS Photonics, 7, 3199-3206(2020).

    [119] S N Tao, Z X Shen, H G Yu et al. Transflective spatial terahertz wave modulator. Opt Lett, 47, 1650-1653(2022).

    [120] S Liu, F Xu, J L Zhan et al. Terahertz liquid crystal programmable metasurface based on resonance switching. Opt Lett, 47, 1891-1894(2022).

    [121] W L Li, X M Hu, J B Wu et al. Dual-color terahertz spatial light modulator for single-pixel imaging. Light Sci Appl, 11, 191(2022).

    [122] S Wang, H B Guo, B W Chen et al. Electrically active terahertz liquid-crystal metasurface for polarization vortex beam switching. Laser Photonics Rev, 2301301(2024).

    [123] T Wakayama, T Higashiguchi, H Oikawa et al. Determination of the polarization states of an arbitrary polarized terahertz beam: vectorial vortex analysis. Sci Rep, 5, 9416(2015).

    [124] T Wakayama, T Higashiguchi, K Sakaue et al. Demonstration of a terahertz pure vector beam by tailoring geometric phase. Sci Rep, 8, 8690(2018).

    [125] H Niwa, N Yoshikawa, M Kawaguchi et al. Switchable generation of azimuthally- and radially-polarized terahertz beams from a spintronic terahertz emitter. Opt Express, 29, 13331-13343(2021).

    [126] T Grosjean, F Baida, R Adam et al. Linear to radial polarization conversion in the THz domain using a passive system. Opt Express, 16, 18895-18909(2008).

    [127] J Y Fan, L Zhang, Z Y Wu et al. Simultaneous and independent control of phase and polarization in terahertz band for functional integration of multiple devices. Opt Laser Technol, 151, 108064(2022).

    [128] C Zeng, H Lu, D Mao et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron Adv, 5, 200098(2022).

    [129] S J Zhang, T Cao, Z Tian. Progress on reconfigurable terahertz metasurface devices based on sulfide phase change materials. Opto-Electron Eng, 50, 230142(2023).

    [130] S N Guan, J R Cheng, S J Chang. Recent progress of terahertz spatial light modulators: materials, principles and applications. Micromachines, 13, 1637(2022).

    [131] H G Yu, H C Wang, Q G Wang et al. Liquid crystal-tuned planar optics in terahertz range. Appl Sci, 13, 1428(2023).

    Tools

    Get Citation

    Copy Citation Text

    Hao Hu, Xiaoxue Hu, Liping Gong, Sixing Xi, Xiaolei Wang. Research progress of terahertz vector beams[J]. Opto-Electronic Engineering, 2024, 51(8): 240071

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 25, 2024

    Accepted: May. 16, 2024

    Published Online: Nov. 12, 2024

    The Author Email: Wang Xiaolei (王晓雷)

    DOI:10.12086/oee.2024.240071

    Topics