International Journal of Extreme Manufacturing, Volume. 6, Issue 3, 32003(2024)
2D multifunctional devices: from material preparation to device fabrication and neuromorphic applications
[1] [1] Chen C P and Zhang C Y 2014 Data-intensive applications,challenges, techniques and technologies: a survey on big data Inf. Sci. 275 314–47
[2] [2] Cheng C, Tiw P J, Cai Y, Yan X, Yang Y and Huang R 2021 In-memory computing with emerging nonvolatile memory devices Sci. China Inf. Sci. 64 221402
[3] [3] Moore G E 1998 Cramming more components onto integrated circuits Proc. IEEE 86 82–85
[4] [4] Drachman D A 2005 Do we have brain to spare? Neurology64 2004–5
[5] [5] Pfeiffer M and Pfeil T 2018 Deep learning with spiking neurons: opportunities and challenges Front. Neurosci.12 774
[6] [6] Mead C 1990 Neuromorphic electronic systems Proc. IEEE78 1629–36
[7] [7] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nanoscale memristor device as synapse in neuromorphic systems Nano Lett. 10 1297–301
[8] [8] Kuzum D, Jeyasingh R G D, Lee B and Wong H S P 2012 Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing Nano Lett.12 2179–86
[9] [9] Tian H, Zhao L F, Wang X F, Yeh Y W, Yao N, Rand B P and Ren T L 2017 Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing ACS Nano 11 12247–56
[10] [10] Shi Y Y et al 2018 Electronic synapses made of layered two-dimensional materials Nat. Electron. 1 458–65
[11] [11] Park E et al 2022 A pentagonal 2D layered PdSe2-based synaptic device with a graphene floating gate J. Mater.Chem. C 10 16536–45
[12] [12] Yang C S, Shang D S, Liu N, Fuller E J, Agrawal S,Talin A A, Li Y Q, Shen B G and Sun Y 2018 All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing Adv. Funct.Mater. 28 1804170
[13] [13] Cheng Y C, Shan K X, Xu Y, Yang J L, He J and Jiang J 2020 Hardware implementation of photoelectrically modulated dendritic arithmetic and spike-timing-dependent plasticity enabled by an ion-coupling gate-tunable vertical 0D-perovskite/2D-MoS2 hybrid-dimensional van der Waals heterostructure Nanoscale 12 21798–8811
[14] [14] Yang X X, Yu J R, Zhao J, Chen Y H, Gao G Y, Wang Y F,Sun Q J and Wang Z L 2020 Mechanoplastic tribotronic floating-gate neuromorphic transistor Adv. Funct. Mater.30 2002506
[15] [15] Shao L et al 2019 Optoelectronic properties of printed photogating carbon nanotube thin film transistors and their application for light-stimulated neuromorphic devices ACS Appl. Mater. Interfaces 11 12161–9
[16] [16] Wang X W, Wang B L, Zhang Q H, Sun Y F, Wang E Z,Luo H, Wu Y H, Gu L, Li H L and Liu K 2021 Grain-boundary engineering of monolayer MoS2 for energy-efficient lateral synaptic devices Adv. Mater.33 2102435
[17] [17] Zhou F C et al 2019 Optoelectronic resistive random access memory for neuromorphic vision sensors Nat. Nanotechnol. 14 776–82
[18] [18] He Y L, Nie S, Liu R, Jiang S S, Shi Y and Wan Q 2019 Dual-functional long-term plasticity emulated in IGZO-based photoelectric neuromorphic transistors IEEE Electron Device Lett. 40 818–21
[19] [19] Wang Y, Lv Z Y, Chen J R, Wang Z P, Zhou Y, Zhou L,Chen X L and Han S T 2018 Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing Adv. Mater. 30 1802883
[20] [20] Wu Q T et al 2018 Photoelectric plasticity in oxide thin film transistors with tunable synaptic functions Adv. Electron.Mater. 4 1800556
[21] [21] Yu J R, Yang X X, Gao G Y, Xiong Y, Wang Y F, Han J,Chen Y H, Zhang H, Sun Q J and Wang Z L 2021 Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure Sci. Adv. 7 eabd9117
[22] [22] Sharbati M T, Du Y H, Torres J, Ardolino N D, Yun M and Xiong F 2018 Low-power, electrochemically tunable graphene synapses for neuromorphic computing Adv.Mater. 30 1802353
[23] [23] Jiang J, Guo J J, Wan X, Yang Y, Xie H P, Niu D M, Yang J J,He J, Gao Y L and Wan Q 2017 2D MoS2 neuromorphic devices for brain-like computational systems Small 13 1700933
[24] [24] Zhang W G, Gao H, Deng C S, Lv T, Hu S L, Wu H, Xue S Y, Tao Y F, Deng L M and Xiong W 2021 An ultrathin memristor based on a two-dimensional WS2/MoS2 heterojunction Nanoscale 13 11497–504
[25] [25] Chen H H, Kang Y, Pu D, Tian M, Wan N, Xu Y, Yu B, Jie W J and Zhao Y D 2023 Introduction of defects in hexagonal boron nitride for vacancy-based 2D memristors Nanoscale 15 4309–16
[26] [26] Ahmed T et al 2019 Multifunctional optoelectronics via harnessing defects in layered black phosphorus Adv.Funct. Mater. 29 1901991
[27] [27] Wang K Y, Chen J S and Yan X B 2021 MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications Nano Energy79 105453
[28] [28] Zhao T S, Zhao C, Xu W Y, Liu Y N, Gao H, Mitrovic I Z,Lim E G, Yang L and Zhao C Z 2021 Bio-inspired photoelectric artificial synapse based on two-dimensional Ti3C2Tx MXenes floating gate Adv. Funct. Mater.31 2106000
[29] [29] Wang M et al 2018 Robust memristors based on layered two-dimensional materials Nat. Electron. 1 130–6
[30] [30] Yan X B et al 2019 Vacancy-induced synaptic behavior in 2D WS2 nanosheet–based memristor for low-power neuromorphic computing Small 15 1901423
[31] [31] Hwang Y, Park B, Hwang S, Choi S W, Kim H S, Kim A R,Choi J W, Yoon J, Kwon J D and Kim Y 2023 A bioinspired ultra flexible artificial van der Waals 2D-MoS2 channel/LiSiOx solid electrolyte synapse arrays via laser-lift off process for wearable adaptive neuromorphic computing Small Methods 7 2201719
[32] [32] Hu W N, Jiang J, Xie D D, Liu B, Yang J L and He J 2019 Proton–electron-coupled MoS2 synaptic transistors with a natural renewable biopolymer neurotransmitter for brain-inspired neuromorphic learning J. Mater. Chem. C7 682–91
[33] [33] Meng J L, Wang T Y, Zhu H, Ji L, Bao W Z, Zhou P, Chen L,Sun Q Q and Zhang D W 2022 Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application Nano Lett. 22 81–89
[34] [34] Wang L, Wang X J, Zhang Y S, Li R L, Ma T, Leng K,Chen Z, Abdelwahab I and Loh K P 2020 Exploring ferroelectric switching in α-In2Se3 for neuromorphic computing Adv. Funct. Mater. 30 2004609
[35] [35] Zhou Y et al 2022 A reconfigurable two-WSe2-transistor synaptic cell for reinforcement learning Adv. Mater.34 2107754
[36] [36] Paul T, Ahmed T, Tiwari K K, Thakur C S and Ghosh A 2019 A high-performance MoS2 synaptic device with floating gate engineering for neuromorphic computing 2D Mater.6 045008
[37] [37] Wang J C, Wang Q L T, Chen Q, Lei T, Lv W M, Tu H Y,Hu R, Wang Y P, Zeng Z M and Ma T Y 2022 A floating-gate-like transistor based on InSe vdW heterostructure with high-performance synaptic characteristics Phys. Status Solidi a 219 2200156
[38] [38] Hu M, Yu J, Chen Y Y, Wang S Q, Dong B Y, Wang H,He Y H, Ma Y, Zhuge F W and Zhai T Y 2022 A non-linear two-dimensional float gate transistor as a lateral inhibitory synapse for retinal early visual processing Mater. Horiz. 9 2335–44
[39] [39] Wang X W, Sun Y H and Liu K 2019 Chemical and structural stability of 2D layered materials 2D Mater. 6 042001
[40] [40] Li L H, Cervenka J, Watanabe K, Taniguchi T and Chen Y 2014 Strong oxidation resistance of atomically thin boron nitride nanosheets ACS Nano 8 1457–62
[41] [41] Kahng Y H, Lee S, Park W, Jo G, Choe M, Lee J H, Yu H,Lee T and Lee K 2012 Thermal stability of multilayer graphene films synthesized by chemical vapor deposition and stained by metallic impurities Nanotechnology23 075702
[42] [42] Guo F, Song M L, Wong M C, Ding R, Io W F, Pang S Y,Jie W J and Hao J H 2022 Multifunctional optoelectronic synapse based on ferroelectric van der Waals heterostructure for emulating the entire human visual system Adv. Funct. Mater. 32 2108014
[43] [43] Hou Y-X et al 2021 Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing ACS Nano15 1497–508
[44] [44] Chen Z F et al 2023 Comparative coherence between layered and traditional semiconductors: unique opportunities for heterogeneous integration Int. J. Extrem. Manuf 5 042001
[45] [45] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y,Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666–9
[46] [46] Bessonov A A, Kirikova M N, Petukhov D I, Allen M,Ryh?nen T and Bailey M J A 2015 Layered memristive and memcapacitive switches for printable electronics Nat.Mater. 14 199–204
[47] [47] Seo S et al 2018 Artificial optic-neural synapse for colored and color-mixed pattern recognition Nat. Commun.9 5106
[48] [48] Das S, Dodda A and Das S 2019 A biomimetic 2D transistor for audiomorphic computing Nat. Commun. 10 3450
[49] [49] Ding G L et al 2022 Filament engineering of two-dimensional h-BN for a self-power mechano-nociceptor system Small 18 2200185
[50] [50] Yu J R, Wang Y F, Qin S S, Gao G Y, Xu C, Wang Z L and Sun Q J 2022 Bioinspired interactive neuromorphic devices Mater. Today 60 158–82
[51] [51] Ilyas N, Wang J Y, Li C M, Li D Y, Fu H, Gu D E, Jiang X D, Liu F C, Jiang Y D and Li W 2022 Nanostructured materials and architectures for advanced optoelectronic synaptic devices Adv. Funct. Mater. 32 2110976
[52] [52] Cheng Z G, Ríos C, Pernice W H P, Wright C D and Bhaskaran H 2017 On-chip photonic synapse Sci. Adv.3 e1700160
[53] [53] Yu J R, Gao G Y, Huang J R, Yang X X, Han J, Zhang H, Chen Y H, Zhao C L, Sun Q J and Wang Z L 2021 Contact-electrification-activated artificial afferents at femtojoule energy Nat. Commun. 12 1581
[54] [54] Jia M M, Guo P W, Wang W, Yu A F, Zhang Y F, Wang Z L and Zhai J Y 2022 Tactile tribotronic reconfigurable p-n junctions for artificial synapses Sci. Bull. 67 803–12
[55] [55] Seo S et al 2020 Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition Nat.Commun. 11 3936
[56] [56] Li F L et al 2021 Bio-inspired multi-mode pain-perceptual system (MMPPS) with noxious stimuli warning, damage localization, and enhanced damage protection Adv. Sci.8 2004208
[57] [57] Zhang M Y, Chi Z G, Wang G Q, Fan Z L, Wu H L, Yang P,Yang J B, Yan P G and Sun Z H 2022 An irradiance-adaptable near-infrared vertical heterojunction phototransistor Adv. Mater. 34 2205679
[58] [58] Xu R J, Jang H, Lee M H, Amanov D, Cho Y, Kim H, Park S,Shin H J and Ham D 2019 Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV Nano Lett. 19 2411–7
[59] [59] Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y and Duan X F 2016 Van der Waals heterostructures and devices Nat. Rev. Mater. 1 16042
[60] [60] Geim A K and Grigorieva I V 2013 Van der Waals heterostructures Nature 499 419–25
[61] [61] Geim A K and Novoselov K S 2007 The rise of graphene Nat. Mater. 6 183–91
[62] [62] Novoselov K S, Geim A K, Morozov S V, Jiang D,Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Two-dimensional gas of massless Dirac fermions in graphene Nature 438 197–200
[63] [63] Schwierz F 2010 Graphene transistors Nat. Nanotechnol.5 487–96
[64] [64] Wang G R, Hou H Y, Yan Y F, Jagatramka R, Shirsalimian A,Wang Y F, Li B Z, Daly M and Cao C H 2023 Recent advances in the mechanics of 2D materials Int. J. Extrem.Manuf 5 032002
[65] [65] Zhang Y B, Tang T T, Girit C, Hao Z, Martin M C, Zettl A,Crommie M F, Shen Y R and Wang F 2009 Direct observation of a widely tunable bandgap in bilayer graphene Nature 459 820–3
[66] [66] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L,Chen X H and Zhang Y B 2014 Black phosphorus field-effect transistors Nat. Nanotechnol. 9 372–7
[67] [67] Onodera M, Masubuchi S, Moriya R and Machida T 2020 Assembly of van der Waals heterostructures: exfoliation, searching, and stacking of 2D materials Jpn. J. Appl. Phys.59 010101
[68] [68] Castellanos-Gomez A, Buscema M, Molenaar R, Singh V,Janssen L, van der Zant H S J and Steele G A 2014 Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping 2D Mater. 1 011002
[69] [69] Kinoshita K, Moriya R, Onodera M, Wakafuji Y,Masubuchi S, Watanabe K, Taniguchi T and Machida T 2019 Dry release transfer of graphene and few-layer h-BN by utilizing thermoplasticity of polypropylene carbonate npj 2D Mater. Appl. 3 22
[70] [70] Wang L et al 2013 One-dimensional electrical contact to a two-dimensional material Science 342 614–7
[71] [71] Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L,Elias D C, Novoselov K S, Ponomarenko L A, Geim A K and Gorbachev R 2012 Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices Nat. Mater. 11 764–7
[72] [72] Watanabe K, Taniguchi T and Kanda H 2004 Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal Nat. Mater. 3 404–9
[73] [73] Zomer P J, Dash S P, Tombros N and van Wees B J 2011 A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride Appl.Phys. Lett. 99 232104
[74] [74] Dean C R et al 2010 Boron nitride substrates for high-quality graphene electronics Nat. Nanotechnol. 5 722–6
[75] [75] Sun L F et al 2019 Self-selective van der Waals heterostructures for large scale memory array Nat.Commun. 10 3161
[76] [76] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Atomically thin MoS2: a new direct-gap semiconductor Phys. Rev. Lett. 105 136805
[77] [77] Yang H, Kim S W, Chhowalla M and Lee Y H 2017 Structural and quantum-state phase transitions in van der Waals layered materials Nat. Phys. 13 931–7
[78] [78] Sun L F, Zhang Y S, Hwang G, Jiang J B, Kim D,Eshete Y A, Zhao R and Yang H 2018 Synaptic computation enabled by joule heating of single-layered semiconductors for sound localization Nano Lett.18 3229–34
[79] [79] Mayorov A S et al 2011 Micrometer-scale ballistic transport in encapsulated graphene at room temperature Nano Lett.11 2396–9
[80] [80] Tian H et al 2017 Emulating bilingual synaptic response using a junction-based artificial synaptic device ACS Nano11 7156–63
[81] [81] Coleman J N et al 2011 Two-dimensional nanosheets produced by liquid exfoliation of layered materials Science 331 568–71
[82] [82] Halim U, Zheng C R, Chen Y, Lin Z Y, Jiang S, Cheng R,Huang Y and Duan X F 2013 A rational design of cosolvent exfoliation of layered materials by directly probing liquid–solid interaction Nat. Commun. 4 2213
[83] [83] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G,Mohite A D and Chhowalla M 2014 Phase-engineered low-resistance contacts for ultrathin MoS2 transistors Nat.Mater. 13 1128–34
[84] [84] Kiriya D, Tosun M, Zhao P D, Kang J S and Javey A 2014 Air-stable surface charge transfer doping of MoS2 by benzyl viologen J. Am. Chem. Soc. 136 7853–6
[85] [85] Hlaing H, Carta F, Barton R, Nam C Y, Petrone N, Hone J and Kymissis I 2014 Low-power organic electronics based on gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures Proc.72nd Device Research Conf. (IEEE) pp 279–80
[86] [86] Leong W S, Gong H and Thong J T L 2014 Low-contact-resistance graphene devices with nickel-etched-graphene contacts ACS Nano8 994–1001
[87] [87] Pospischil A, Furchi M M and Mueller T 2014 Solar-energy conversion and light emission in an atomic monolayer p–n diode Nat. Nanotechnol. 9 257–61
[88] [88] Baugher B W H, Churchill H O H, Yang Y F and Jarillo-Herrero P 2014 Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide Nat. Nanotechnol. 9 262–7
[89] [89] Poh S M et al 2018 Molecular-beam epitaxy of two-dimensional In2Se3 and its giant electroresistance switching in ferroresistive memory junction Nano Lett.18 6340–6
[90] [90] Hall J, Pieli′c B, Murray C, Jolie W, Wekking T, Busse C,Kralj M and Michely T 2018 Molecular beam epitaxy of quasi-freestanding transition metal disulphide monolayers on van der Waals substrates: a growth study 2D Mater.5 025005
[91] [91] Kang K, Xie S E, Huang L J, Han Y M, Huang P Y, Mak K F,Kim C J, Muller D and Park J 2015 High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity Nature 520 656–60
[92] [92] Lin Y-C et al 2015 Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures Nat.Commun. 6 7311
[93] [93] Tan L K, Liu B, Teng J H, Guo S F, Low H Y and Loh K P2014 Atomic layer deposition of a MoS2 film Nanoscale 6 10584–8
[94] [94] Kim H M, Kim D G, Kim Y S, Kim M and Park J S 2023 Atomic layer deposition for nanoscale oxide semiconductor thin film transistors: review and outlook Int. J. Extrem. Manuf. 5 012006
[95] [95] Yang Z B, Jie W J, Mak C H, Lin S H, Lin H H, Yang X F,Yan F, Lau S P and Hao J H 2017 Wafer-scale synthesis of high-quality semiconducting two-dimensional layered InSe with broadband photoresponse ACS Nano11 4225–36
[96] [96] Zheng Z Q, Zhang T M, Yao J D, Zhang Y, Xu J R and Yang G W 2016 Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices Nanotechnology 27 225501
[97] [97] Xue J M, Sanchez-Yamagishi J, Bulmash D, Jacquod P,Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P and LeRoy B J 2011 Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride Nat. Mater. 10 282–5
[98] [98] Abbott L F and Regehr W G 2004 Synaptic computation Nature 431 796–803
[99] [99] Voglis G and Tavernarakis N 2006 The role of synaptic ion channels in synaptic plasticity EMBO Rep. 7 1104–10
[100] [100] Zucker R S and Regehr W G 2002 Short-term synaptic plasticity Annu. Rev. Physiol. 64 355–405
[101] [101] Dan Y and Poo M M 2004 Spike timing-dependent plasticity of neural circuits Neuron 44 23–30
[102] [102] Chang T, Jo S H and Lu W 2011 Short-term memory to long-term memory transition in a nanoscale memristor ACS Nano 5 7669–76
[103] [103] Xie D D, Yin K, Yang Z J, Huang H, Li X H, Shu Z W,Duan H G, He J and Jiang J 2022 Polarization-perceptual anisotropic two-dimensional ReS2 neuro-transistor with reconfigurable neuromorphic vision Mater. Horiz.9 1448–59
[104] [104] Tang J S et al 2019 Bridging biological and artificial neural networks with emerging neuromorphic devices:fundamentals, progress, and challenges Adv. Mater.31 1902761
[105] [105] Wang K Y et al 2020 A pure 2H-MoS2 nanosheet-based memristor with low power consumption and linear multilevel storage for artificial synapse emulator Adv.Electron. Mater. 6 1901342
[106] [106] Yu T, Zhao Z, Jiang H, Weng Z, Fang Y, Liu C, Lei W,Shafe S B and Mohtar M N 2022 A low-power memristor based on 2H–MoTe2 nanosheets with synaptic plasticity and arithmetic functions Mater. Today Nano19 100233
[107] [107] Zhang F, Zhang H R, Krylyuk S, Milligan C A, Zhu Y Q,Zemlyanov D Y, Bendersky L A, Burton B P,Davydov A V and Appenzeller J 2019 Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories Nat. Mater.18 55–61
[108] [108] Zhu X J, Li D, Liang X G and Lu W D 2019 Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing Nat. Mater. 18 141–8
[109] [109] Xu J Q, Leng K M, Huang X X, Ye Y Y and Gong J F 2021 Artificial synapses based on electric stress induced conductance variation in vertical MoReS3 nanosheets Appl. Phys. Lett. 119 263101
[110] [110] Zhu J D et al 2018 Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics Adv. Mater. 30 1800195
[111] [111] He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L, Zhai T Y and Guo X 2018 Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2 Small 14 1800079
[112] [112] John R A, Liu F C, Chien N A, Kulkarni M R, Zhu C,Fu Q D, Basu A, Liu Z and Mathews N 2018 Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: coexistence of Hebbian and homeostatic synaptic metaplasticity Adv. Mater. 30 1800220
[113] [113] Cheng Y C, Li H J W, Liu B, Jiang L Y, Liu M, Huang H,Yang J L, He J and Jiang J 2020 Vertical 0D-perovskite/2D-MoS2 van der Waals heterojunction phototransistor for emulating photoelectric-synergistically classical Pavlovian conditioning and neural coding dynamics Small 16 2005217
[114] [114] Hu Y X et al 2022 Flexible optical synapses based on In2Se3/MoS2 heterojunctions for artificial vision systems in the near-infrared range ACS Appl. Mater. Interfaces14 55839–49
[115] [115] Zhang F Q, Li C Y, Li Z Y, Dong L X and Zhao J 2023 Recent progress in three-terminal artificial synapses based on 2D materials: from mechanisms to applications Microsyst. Nanoeng. 9 16
[116] [116] Li C H, Du W, Liu H Z, Yang M, Xu H, Wu J and Wang Z M2022 A hippocampus-inspired illumination time-resolved device for neural coding Sci. China Mater. 65 1087–93
[117] [117] Liu X T, Chen J R, Wang Y, Han S T and Zhou Y 2021 Building functional memories and logic circuits with 2D boron nitride Adv. Funct. Mater. 31 2004733
[118] [118] Chen L, Pam M E, Li S F and Ang K W 2022 Ferroelectric memory based on two-dimensional materials for neuromorphic computing Neuromorph. Comput. Eng.2 022001
[119] [119] Ling H F, Koutsouras D A, Kazemzadeh S, van de Burgt Y,Yan F and Gkoupidenis P 2020 Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing Appl. Phys. Rev.7 011307
[120] [120] Kim S H, Hong K, Xie W, Lee K H, Zhang S P, Lodge T P and Frisbie C D 2013 Electrolyte-gated transistors for organic and printed electronics Adv. Mater. 25 1822–46
[121] [121] Oh S, Lee J H, Seo S, Choo H, Lee D, Cho J I and Park J H2022 Electrolyte-gated vertical synapse array based on van der Waals heterostructure for parallel computing Adv. Sci.9 2103808
[122] [122] Yan S A, Zang J Y, Xu P, Zhu Y F, Li G, Chen Q L, Chen Z J,Zhang Y, Tang M H and Zheng X J 2023 Recent progress in ferroelectric synapses and their applications Sci. China Mater. 66 877–94
[123] [123] Kim E J, Kim K A and Yoon S M 2016 Investigation of the ferroelectric switching behavior of P(VDF-TrFE)-PMMA blended films for synaptic device applications J. Phys. D:Appl. Phys. 49 075105
[124] [124] Kaneko Y, Nishitani Y, Tanaka H, Ueda M, Kato Y,Tokumitsu E and Fujii E 2011 Correlated motion dynamics of electron channels and domain walls in a ferroelectric-gate thin-film transistor consisting of a ZnO/Pb(Zr,Ti)O3 stacked structure J. Appl. Phys.110 084106
[125] [125] Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y,Zhang Z Y and Zhu W G 2017 Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials Nat. Commun.8 14956
[126] [126] Hanakata P Z, Carvalho A, Campbell D K and Park H S 2016 Polarization and valley switching in monolayer group-IV monochalcogenides Phys. Rev. B 94 035304
[127] [127] Zhao Y et al 2022 Memristor based on α-In2Se3 for emulating biological synaptic plasticity and learning behavior Sci. China Mater. 65 1631–8
[128] [128] Si M W et al 2019 A ferroelectric semiconductor field-effect transistor Nat. Electron. 2 580–6
[129] [129] Rodder M A, Vasishta S and Dodabalapur A 2020 Double-gate MoS2 field-effect transistor with a multilayer graphene floating gate: a versatile device for logic,memory, and synaptic applications ACS Appl. Mater.Interfaces 12 33926–33
[130] [130] Van Tho L, Baeg K J and Noh Y Y 2016 Organic nano-floating-gate transistor memory with metal nanoparticles Nano Converg. 3 10
[131] [131] Zhang X H, Li E L, Yu R J, He L H, Yu W J, Chen H P and Guo T L 2022 Floating-gate based PN blending optoelectronic synaptic transistor for neural machine translation Sci. China Mater. 65 1383–90
[132] [132] Ren Y, Yang J Q, Zhou L, Mao J Y, Zhang S R, Zhou Y and Han S T 2018 Gate-tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites Adv. Funct. Mater. 28 1805599
[133] [133] Ye L, Li H, Chen Z F and Xu J B 2016 Near-infrared photodetector based on MoS2/black phosphorus heterojunction ACS Photonics 3 692–9
[134] [134] Mao J Y, Zhou L, Zhu X J, Zhou Y and Han S T 2019 Photonic memristor for future computing: a perspective Adv. Opt. Mater. 7 1900766
[135] [135] Feng X W, Liu X K and Ang K W 2020 2D photonic memristor beyond graphene: progress and prospects Nanophotonics 9 1579–99
[136] [136] Jiang J, Hu W N, Xie D D, Yang J L, He J, Gao Y L and Wan Q 2019 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration Nanoscale 11 1360–9
[137] [137] Wang S Y et al 2019 A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility Adv. Mater. 31 1806227
[138] [138] Li M J et al 2021 Defect engineering in ambipolar layered materials for mode-regulable nociceptor Adv. Funct.Mater. 31 2007587
[139] [139] Liao F Y et al 2022 Bioinspired in-sensor visual adaptation for accurate perception Nat. Electron. 5 84–91
[140] [140] Mennel L, Symonowicz J, Wachter S, Polyushkin D K,Molina-Mendoza A J and Mueller T 2020 Ultrafast machine vision with 2D material neural network image sensors Nature 579 62–66
[141] [141] Tan Y L, Hao H, Chen Y B, Kang Y, Xu T, Li C, Xie X N and Jiang T 2022 A bioinspired retinomorphic device for spontaneous chromatic adaptation Adv. Mater. 34 2206816
[142] [142] Liu Q H et al 2022 Hybrid mixed-dimensional perovskite/metal-oxide heterojunction for all-in-one opto-electric artificial synapse and retinal-neuromorphic system Nano Energy 102 107686
[143] [143] Islam M M et al 2022 Multiwavelength optoelectronic synapse with 2D materials for mixed-color pattern recognition ACS Nano 16 10188–98
[144] [144] Wang C-Y et al 2020 Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor Sci. Adv. 6 eaba6173
[145] [145] Hou X, Liu C S, Ding Y, Liu L, Wang S Y and Zhou P 2020 A logic-memory transistor with the integration of visible information sensing-memory-processing Adv. Sci.7 2002072
[146] [146] Alexander K R 2010 Information processing: retinal adaptation Encyclopedia of the Eye ed D A Dartt(Elsevier) pp 379–86
[147] [147] Hong S, Choi S H, Park J, Yoo H, Oh J Y, Hwang E, Yoon D H and Kim S 2020 Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1–xIx)3 perovskite and MoS2 hybrid structure ACS Nano14 9796–806
[148] [148] Xie D D, Wei L B, Xie M, Jiang L Y, Yang J L, He J and Jiang J 2021 Photoelectric visual adaptation based on 0D-CsPbBr3-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor Adv. Funct. Mater. 31 2010655
[149] [149] Zhang Z H, Wang S Y, Liu C S, Xie R Z, Hu W D and Zhou P 2022 All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition Nat. Nanotechnol. 17 27–32
[150] [150] Xie D D, Gao G, Tian B B, Shu Z W, Duan H G, Zhao W W,He J and Jiang J 2023 Porous metal–organic framework/ReS2 heterojunction phototransistor for polarization-sensitive visual adaptation emulation Adv.Mater. 35 2212118
[151] [151] Chen J W, Zhou Z, Kim B J, Zhou Y, Wang Z Q, Wan T Q,Yan J M, Kang J F, Ahn J H and Chai Y 2023 Optoelectronic graded neurons for bioinspired in-sensor motion perception Nat. Nanotechnol. 18 882–8
[152] [152] Jeffress L A 1948 A place theory of sound localization J.Comp. Physiol. Psychol. 41 35–39
[153] [153] Wightman F L and Kistler D J 1992 The dominant role of low-frequency interaural time differences in sound localization J. Acoust. Soc. Am. 91 1648–61
[154] [154] Liao X Q, Song W T, Zhang X Y, Yan C Q, Li T L, Ren H L,Liu C Z, Wang Y T and Zheng Y J 2020 A bioinspired analogous nerve towards artificial intelligence Nat.Commun. 11 268
[155] [155] Chen Y H et al 2019 Piezotronic graphene artificial sensory synapse Adv. Funct. Mater. 29 1900959
[156] [156] Shan L T, Liu Y Q, Zhang X H, Li E L, Yu R J, Lian Q M,Chen X, Chen H P and Guo T L 2021 Bioinspired kinesthetic system for human-machine interaction Nano Energy 88 106283
[157] [157] Zhang C, Zhao J Q, Zhang Z, Bu T Z, Liu G X and Fu X P 2023 Tribotronics: an emerging field by coupling triboelectricity and semiconductors Int. J. Extrem. Manuf 5 042002
[158] [158] Cao Y X et al 2023 Biodegradable and flexible artificial nociceptor based on Mg/MgO threshold switching memristor Sci. China Mater. 66 1569–77
[159] [159] Feng G D, Jiang J, Li Y R, Xie D D, Tian B B and Wan Q2021 Flexible vertical photogating transistor network with an ultrashort channel for in-sensor visual nociceptor Adv.Funct. Mater. 31 2104327
[160] [160] Kim Y et al 2018 Nociceptive memristor Adv. Mater.30 1704320
[161] [161] Xiao M, Shen D Z, Futscher M H, Ehrler B, Musselman K P,Duley W W and Zhou Y N 2020 Threshold switching in single metal-oxide nanobelt devices emulating an artificial nociceptor Adv. Electron. Mater. 6 1900595
[162] [162] Dev D, Shawkat M S, Krishnaprasad A, Jung Y and Roy T 2020 Artificial nociceptor using 2D MoS2 threshold switching memristor IEEE Electron Device Lett.41 1440–3
[163] [163] Kumar M, Kim H S and Kim J 2019 A highly transparent artificial photonic nociceptor Adv. Mater. 31 1900021
[164] [164] Hucho T and Levine J D 2007 Signaling pathways in sensitization: toward a nociceptor cell biology Neuron55 365–76
[165] [165] Li X S et al 2009 Large-area synthesis of high-quality and uniform graphene films on copper foils Science 324 1312–4
[166] [166] Chen M K, Wang Y F, Shepherd N, Huard C, Zhou J T,Guo L J, Lu W and Liang X G 2017 Abnormal multiple charge memory states in exfoliated few-layer WSe2 transistors ACS Nano 11 1091–102
[167] [167] Yang P F et al 2018 Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass Nat. Commun. 9 979
[168] [168] Wang T, Huang H M, Wang X X and Guo X 2021 An artificial olfactory inference system based on memristive devices InfoMat 3 804–13
[169] [169] Han J K, Kang M G, Jeong J, Cho I, Yu J M, Yoon K J, Park I and Choi Y K 2022 Artificial olfactory neuron for an in-sensor neuromorphic nose Adv. Sci. 9 2106017
[170] [170] Park S J, Kwon O S, Lee S H, Song H S, Park T H and Jang J 2012 Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose Nano Lett.12 5082–90
Get Citation
Copy Citation Text
Zhuohui Huang, Yanran Li, Yi Zhang, Jiewei Chen, Jun He, Jie Jiang. 2D multifunctional devices: from material preparation to device fabrication and neuromorphic applications[J]. International Journal of Extreme Manufacturing, 2024, 6(3): 32003
Received: Jul. 31, 2023
Accepted: --
Published Online: Sep. 11, 2024
The Author Email: Jiang Jie (jiangjie@csu.edu.cn)