Journal of Innovative Optical Health Sciences, Volume. 4, Issue 2, 191(2011)
NEAR-INFRARED IMAGING SENSOR WITH IMPROVED HANDLING AND DIRECT LOCALIZATION IN SIMULTANEOUS MAGNETIC RESONANCE IMAGING MEASUREMENTS
[1] [1] P. Cerretelli, T. Binzoni, "The contribution of NMR, NIRS and their combination to the functional assessment of human muscle," Int. J. Sports Med. 18(Suppl 4), S270-S279 (1997).
[2] [2] S. Ogawa, T. M. Lee, A. S. Nayak, P. Glynn, "Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields," Magn. Reson. Med. 14(1), 68-78 (1990).
[3] [3] N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, A. Oeltermann, "Neurophysiological investigation of the basis of the fMRI signal," Nature 412(6843), 150-157 (2001).
[4] [4] N. K. Logothetis, "What we can do and what we cannot do with fMRI," Nature 453(7197), 869-878 (2008).
[5] [5] R. B. Buxton, E. C. Wong, L. R. Frank, "Dynamics of blood flow and oxygenation changes during brain activation: The balloon model," Magn. Reson. Med. 39(6), 855-864 (1998).
[6] [6] K. J. Friston, L. Harrison, W. Penny, "Dynamic causal modelling," Neuroimage 19(4), 1273-1302 (2003).
[7] [7] M. Wolf, M. Ferrari, V. Quaresima, "Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications," J. Biomed. Opt. 12(6), 062104 (2007).
[8] [8] M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, E. Gratton, "Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: A near-infrared spectroscopy study," Neuroimage 16(3 Pt 1), 704-712 (2002).
[9] [9] M. Schweiger, S. R. Arridge, "Optical tomographic reconstruction in a complex head model using a priori region boundary information," Phys. Med. Biol. 44(11), 2703-2721 (1999).
[10] [10] D. J. Mehagnoul-Schipper, B. F. van der Kallen, W. N. Colier, M. C. van der Sluijs, L. J. van Erning, H. O. Thijssen, B. Oeseburg, W. H. Hoefnagels, R. W. Jansen, "Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects," Hum. Brain Mapp. 16(1), 14-23 (2002).
[11] [11] A. Kleinschmidt, H. Obrig, M. Requardt, K. D. Merboldt, U. Dirnagl, A. Villringer, J. Frahm, "Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy," J. Cerebr. Blood F. Met. 16(5), 817-826 (1996).
[12] [12] V. Toronov, A. Webb, J. H. Choi, M. Wolf, A. Michalos, E. Gratton, D. Hueber, "Investigation of human brain hemodynamics by simultaneous nearinfrared spectroscopy and functional magnetic resonance imaging," Med. Phys. 28(4), 521-527 (2001).
[13] [13] G. Strangman, J. P. Culver, J. H. Thompson, D. A. Boas, "A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation," Neuroimage 17(2), 719-731 (2002).
[14] [14] A. Sassaroli, B. Frederick, Y. Tong, P. F. Renshaw, S. Fantini, "Spatially weighted BOLD signal for comparison of functional magnetic resonance imaging and near-infrared imaging of the brain," Neuroimage 33(2), 505-514 (2006).
[15] [15] T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, D. A. Boas, "A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans," Neuroimage 29(2), 368-382 (2006).
[16] [16] H. Toyoda, K. Kashikura, T. Okada, S. Nakashita, M. Honda, Y. Yonekura, H. Kawaguchi, A. Maki, N. Sadato, "Source of nonlinearity of the BOLD response revealed by simultaneous fMRI and NIRS," Neuroimage 39(3), 997-1013 (2008).
[17] [17] K. Kotilahti, I. Nissila, M. Huotilainen, R. Makela, N. Gavrielides, T. Noponen, P. Bjorkman, V. Fellman, T. Katila, "Bilateral hemodynamic responses to auditory stimulation in newborn infants," Neuroreport 16(12), 1373-1377 (2005).
[18] [18] T. Nishida, T. Kusaka, K. Isobe, S. Ijichi, K. Okubo, T. Iwase, K. Kawada, M. Namba, T. Imai, S. Itoh, "Extrauterine environment affects the cortical responses to verbal stimulation in preterm infants," Neurosci. Lett. 443(1), 23-26 (2008).
[19] [19] S. Spichtig, Multi-Distance and Multi-Frequency Frequency-Domain Near-Infrared Imaging: Characterization and Application, Ph.D. thesis, ETH Zurich, Zurich (2010).
[20] [20] L. Friedman, G. H. Glover, "Report on a multicenter fMRI quality assurance protocol," J. Magn. Reson. Imaging 23(6), 827-839 (2006).
[21] [21] S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, "Performance comparison of several published tissue near-infrared spectroscopy algorithms," Anal. Biochem. 227(1), 54-68 (1995).
[22] [22] H. Zhao, Y. Tanikawa, F. Gao, Y. Onodera, A. Sassaroli, K. Tanaka, Y. Yamada, "Maps of optical differential pathlength factor of human adult forehead, somatosensory motor and occipital regions at multi-wavelengths in NIR," Phys. Med. Biol. 47(12), 2075-2093 (2002).
[23] [23] C. Rorden, "MRIcro," http://www.mricro.com.
Get Citation
Copy Citation Text
SONJA SPICHTIG, MARCO PICCIRELLI, ROBERT S. VORBURGER, MARTIN WOLF. NEAR-INFRARED IMAGING SENSOR WITH IMPROVED HANDLING AND DIRECT LOCALIZATION IN SIMULTANEOUS MAGNETIC RESONANCE IMAGING MEASUREMENTS[J]. Journal of Innovative Optical Health Sciences, 2011, 4(2): 191
Received: --
Accepted: --
Published Online: Jan. 10, 2019
The Author Email: SPICHTIG SONJA (sonja.spichtig@alumni.ethz.ch)