Acta Optica Sinica, Volume. 42, Issue 14, 1409001(2022)

Deep Learning-Based Interference-Free Hologram Generation

Jiaxue Wu1, Jinbin Gui1、*, Junchang Li1, Tai Fu1, and Wei Cheng2
Author Affiliations
  • 1Faculty of Science, Kunming University of Science and Technology, Kunming 650500, Yunnan , China
  • 2School of Information Science & Engineering, Yunnan University, Kunming 650504, Yunnan , China
  • show less
    Figures & Tables(12)
    Schematic diagram of digital hologram recording
    Hologram spectrum and reconstructed images with different sizes of filter windows[11]. (a) Hologram spectrum and filter window; (b) reconstructed image with large size filter window; (c) reconstructed image with small size filter window
    Deep learning-based interference-free hologram generation network
    Simulated data sets. (a1)(a2) Original maps; (b1)(b2) holograms; (c1)(c2) reconstructed images; (d1)(d2) spectrograms
    Simulation experiment data. (a) Original images; (b) holograms; (c) reconstructed images; (d) spectrograms; (e) interference-free holograms; (f) reconstructed images of interference-free holograms
    Actual shooting light path diagram
    Actual shooting of Fresnel hologram for verification. (a) Original object; (b) holograms taken actually; (c) spectrogram; (d) interference-free hologram; (e) reconstructed image
    Loss function error curves. (a) RPN classification loss error curve; (b) RPN regression loss error curve;(c) Fast R-CNN classification loss error curve; (d) Fast R-CNN regression error curve; (e) total training error curve; (f) classification accuracy
    Experimental procedure for artificial filtering hologram with interference
    Images obtained by artificial filtering and HoloZL network. (a) Original images; (b) artificially filtered interference-free holograms; (c) reconstructed images of artificially filtered interference-free holograms; (d) interference-free holograms generated by HoloZL network; (e) reconstructed images of interference-free holograms generated by HoloZL network
    • Table 1. Quality assessment metrics of interference-free hologram

      View table

      Table 1. Quality assessment metrics of interference-free hologram

      Angle α /radC1(↑)C2(↑)MAE(↑)PSNR(↑)SSIM(↑)Generated time tG   /sReconstruction time tR   /s
      π/3.001.341.501.0348.110.762.300.60
      3π/4.001.291.850.5748.110.762.200.74
      π/4.001.301.890.7748.100.762.440.69
      π/2.021.311.491.4448.100.751.950.56
      π/2.001.291.590.5948.110.762.000.61
    • Table 2. Quantitative assessment indexes of comparative experiments

      View table

      Table 2. Quantitative assessment indexes of comparative experiments

      Data setPSNR(↑)SSIM(↑)C(↑)MAE(↑)Generated time tG  /sReconstruction time tR  /s
      MnistArtificial filtering48.000.761.360.832.010.41
      HoloZL49.700.771.390.771.930.33
      GuangArtificial filtering27.820.912.981.321.930.54
      HoloZL28.350.952.981.241.710.66
      WukongArtificial filtering17.600.822.726.121.890.41
      HoloZL18.420.822.735.731.330.34
      LianpuArtificial filtering18.820.802.997.761.610.75
      HoloZL19.310.812.997.761.600.53
    Tools

    Get Citation

    Copy Citation Text

    Jiaxue Wu, Jinbin Gui, Junchang Li, Tai Fu, Wei Cheng. Deep Learning-Based Interference-Free Hologram Generation[J]. Acta Optica Sinica, 2022, 42(14): 1409001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Holography

    Received: Dec. 14, 2021

    Accepted: Feb. 21, 2022

    Published Online: Jul. 15, 2022

    The Author Email: Gui Jinbin (jinbingui@163.com)

    DOI:10.3788/AOS202242.1409001

    Topics