Journal of Applied Optics, Volume. 40, Issue 2, 253(2019)
Maximum likelihood pose estimation using machine vision
[1] [1] LI S Q, XU C. Efficient lookup table based camera pose estimation for augmented reality[J]. Computer Animation and Virtual Worlds, 2011, 22(1): 47-58.
[2] [2] CAMPA G, MAMMARELLA M, NAPOLITANO M R, et al.A comparison of pose estimation algorithms for machine vision based aerial refueling for UAV[C]. US: IEEE, 2006.
[4] [4] LI S Q, XU C, XIE M. A robust O(n) solution to the perspective-n-point problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1444-1450.
[5] [5] LEPETIT V, MORENO-NOGUER F, FUA P. EPnP: an accurate O(n) solution to the PnP problem[J]. International Journal of Computer Vision, 2009, 81(2): 155-166.
[6] [6] HMAM H, KIM J. Optimal non-iterative pose estimation via convex relaxation[J]. Image and Vision Computing, 2010, 28(11): 1515-1523.
[7] [7] LOWE D G. Three-dimensional object recognition from single two-dimensional images[J]. Artificial Intelligence, 1987, 31(3): 355-395.
[8] [8] CHEN Peng. Monocular based camera pose estimation[D]. Beijing: University of Science and Technology Beijing, 2015.
[9] [9] LU C P, HAGER G D, MJOLSNESS E. Fast and globally convergent pose estimation from video images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(6): 610-622.
[10] [10] LI Xin, LONG Gucan, LIU Jinbo, et al. Accelerative orthogonal iteration algorithm for camera pose estimation[J]. Acta Optica Sinica, 2015, 35(1): 258-265.
[11] [11] SCHWEIGHOFER G, PINZ A.Robust pose estimation from a planar target[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2024-2030.
[12] [12] LUO Pengfei, ZHANG Wenming, LIU Zhong, et al.Fundamentals of statistical signal processing[M].Beijing: Publishing House of Electronics Industry, 2014: 155-202.
[13] [13] STOICA P, NEHORIA A.Mode, maximum likelihood, and Cramér-Rao bound: conditional and unconditional results[R]. New Haven: Center for Systems Science Yale University, 1989.
[14] [14] FRIEDLANDER B, PORAT B. The exact Cramer-Rao bound for Gaussian autoregressive processes[J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(1): 3-7.
[15] [15] VAN TREES H L.Detection, estimation, and modulation theory, Part VI[M]. New York: Wiley Interscience, 2001: 689-785.
Get Citation
Copy Citation Text
QU Yepin, ZHANG Chaoran, LYU Yuhai. Maximum likelihood pose estimation using machine vision[J]. Journal of Applied Optics, 2019, 40(2): 253
Category:
Received: Jul. 24, 2018
Accepted: --
Published Online: Mar. 26, 2019
The Author Email: Yepin QU (qypin@126.com)