Journal of the Chinese Ceramic Society, Volume. 52, Issue 3, 784(2024)

Fluorescence Properties of Ce3+/Eu3+ Co-doped Y3Al5O12 Transparent Ceramics

XIAO Huangsheng1...2, LIN Yuqing1,2, DENG Zhiqiang1,2, YANG Yujuan1,3, CHEN Jian3, DENG Zhonghua3, HUANG Jiquan3, and GUO Wang34,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(38)

    [2] [2] LI Jinmin, LIU Zhiqiang, WEI Tongbo, et al. Acta Opt Sin, 2021, 41(1): 285-297.

    [3] [3] WEI N A, LU T C, LI F, et al. Transparent Ce: Y3Al5O12 ceramic phosphors for white light-emitting diodes[J]. Appl Phys Lett, 2012, 101(6): 061902.

    [4] [4] SCHUBERT E F, KIM J K. Solid-state light sources getting smart[J]. Science, 2005, 308(5726): 1274-1278.

    [5] [5] PUST P, SCHMIDT P J, SCHNICK W. A revolution in lighting[J]. Nat Mater, 2015, 14(5): 454-458.

    [6] [6] PIMPUTKAR S, SPECK J S, DENBAARS S P, et al. Prospects for LED lighting[J]. Nat Photonics, 2009, 3(4): 180-182.

    [7] [7] LIN Y C, BETTINELLI M, SHARMA S K, et al. Unraveling the impact of different thermal quenching routes on the luminescence efficiency of the Y3Al5O12: Ce3+ phosphor for white light emitting diodes[J]. J Mater Chem C, 2020, 8(40): 14015-14027.

    [8] [8] AKIYAMA S, MORIYAMA R, MIYA R, et al. Fabrication of high-efficiency YAG: Ce3+ phosphors via concurrent optimization of firing atmosphere and fluxing agent[J]. Opt Mater, 2022, 128: 112386.

    [9] [9] CHEN H R, CAI C, ZHANG Z W, et al. Enhancing the luminescent efficiency of Y3Al5O12: Ce3+ by coating graphitic carbon nitride: Toward white light-emitting diodes[J]. J Alloys Compd, 2019, 801: 10-18.

    [10] [10] WEI Y, YANG H, GAO Z Y, et al. Strategies for designing antithermal-quenching red phosphors[J]. Adv Sci, 2020, 7(8): 1903060.

    [11] [11] HUANG X Y. New red phosphors enable white LEDs to show both high luminous efficacy and color rendering index[J]. Sci Bull, 2019, 64(13): 879-880.

    [12] [12] DU Q P, FENG S W, QIN H M, et al. Massive red-shifting of Ce3+ emission by Mg2+ and Si4+ doping of YAG: Ce transparent ceramic phosphors[J]. J Mater Chem C, 2018, 6(45): 12200-12205.

    [13] [13] SHI H L, ZHU C, HUANG J Q, et al. Luminescence properties of YAG: Ce, Gd phosphors synthesized under vacuum condition and their white LED performances[J]. Opt Mater Express, 2014, 4(4): 649.

    [14] [14] HUANG J, NI Y R, MA Y L, et al. Composite structure Cr: YAG/Ce: YAG and (Ce, Cr): YAG/Ce: YAG transparent ceramics with high color rendering index for white LEDs/LDs[J]. Ceram Int, 2021, 47(8): 11415-11422.

    [15] [15] PETERMANN K, HUBER G. Broad band fluorescence of transition metal doped garnets and tungstates[J]. J Lumin, 1984, 31/32: 71-77.

    [16] [16] KRIEKE G, DOKE G, ANTUZEVICS A, et al. Structure and persistent luminescence of novel Pr-doped Mg3Lu2Ge3O12 garnet[J]. J Alloys Compd, 2023, 957: 170421.

    [17] [17] VAN BUNNINGEN A J, SONTAKKE A D, VAN DER VLIET R, et al. Luminescence temperature quenching in Mn2+ phosphors[J]. Adv Opt Mater, 2023, 11(6): 2202794.

    [18] [18] WANG B C, YAN C, SHEN K W, et al. Luminescence enhancement of Cr3+ doped garnet phosphor for high-performance LED towards smart NIR light source[J]. Ceram Int, 2023, 49(13): 21864-21871.

    [19] [19] XIANG G X, WANG G J, ZHANG Z J, et al. Multicolor luminescence properties of Ln7O6F9: RE3+ (Ln=Y, Lu; RE=Pr, Sm and Eu) nano-rods with bifurcation[J]. J Alloys Compd, 2017, 692: 471-477.

    [20] [20] SHI H L, CHEN J A, HUANG J Q, et al. Preparation and luminescence properties of YAG: Ce phosphor for white LED application via a vacuum sintering method[J]. Phys Status Solidi A, 2014, 211(7): 1596-1600.

    [21] [21] CHEN S M, YANG S H, CHEN L, et al. MgO-Y2O3: Eu composite ceramics with high quantum yield and excellent thermal performance[J]. J Eur Ceram Soc, 2023, 43(8): 3553-3562.

    [22] [22] LU B, CHENG H M, SUN Z G, et al. Controlled preparation of red-light-emitting (Y0.95Eu0.05)2O3 phosphors and vacuum sintering of transparent (Y0.95Eu0.05)2O3 ceramics[J]. J Ceram Sci Technol, 2018, 9(1): 53-60.

    [24] [24] LI Jiang, LI Wanyuan, LIU Xin, et al. Chin J Lumin, 2021, 42(5): 580-604.

    [25] [25] SHAO C, ZHANG L, ZHOU T Y, et al. Tunable blue/yellow emission in high-power white LED devices packaged with Ce: (Y, Gd)AG transparent ceramics[J]. Ceram Int, 2019, 45(11): 14420-14425.

    [26] [26] DENG Z T, WANG M L, ZHU C Z, et al. Study on light aging of anhydride-cured epoxy resin used for RGB LED packaging material[J]. Polym Test, 2019, 80: 106131.

    [28] [28] LAN Hai, DENG Zhonghua, LIU Zhuguang, et al. J Lumin, 2012, 33(5): 535-539.

    [29] [29] HAN B Y, SINGH S P, SOHN K S. Photoluminescent and structural properties of MgAlSiN3: Eu2+ phosphors[J]. J Electrochem Soc, 2011, 158(2): J32.

    [30] [30] LI Y Q, VAN STEEN J E J, VAN KREVEL J W H, et al. Luminescence properties of red-emitting M2Si5N8: Eu2+ (M=Ca, Sr, Ba) LED conversion phosphors[J]. J Alloys Compd, 2006, 417(1/2): 273-279.

    [31] [31] SIJBOM H F, VERSTRAETE R, JOOS J J, et al. K2SiF6: Mn4+ as a red phosphor for displays and warm-white LEDs: A review of properties and perspectives[J]. Opt Mater Express, 2017, 7(9): 3332.

    [32] [32] WU P, PELTON A D. Coupled thermodynamic-phase diagram assessment of the rare earth oxide-aluminium oxide binary systems[J]. J Alloys Compd, 1992, 179(1/2): 259-287.

    [33] [33] WANG Y, HUANG J Q, LIN Y Q, et al. Photoluminescence and persistent luminescence properties of Lu3ScAl4-xGaxO12: Ce3+ ceramics[J]. J Lumin, 2023, 258: 119824.

    [35] [35] YUAN Bo, QI Chaochao, KONG Li, et al. J Chin Ceram Soc, 2023, 51(3): 783-795.

    [36] [36] VERMA A, VERMA A, BRAMHE G V. Shifting and enhanced photoluminescence performance of the Sr1-xEuxMgAl10O17 phosphor[J]. J Alloys Compd, 2019, 774: 1168-1180.

    [37] [37] DERDZYAN M V, HOVHANNESYAN K L, YEGANYAN A V, et al. Dissimilar behavior of YAG: Ce and LuAG: Ce scintillator garnets regarding Li+ co-doping[J]. CrystEngComm, 2018, 20(11): 1520-1526.

    [38] [38] LIU L Q, CHEN X Y. Energy levels, fluorescence lifetime and Judd-Ofelt parameters of Eu3+ in Gd2O3nanocrystals[J]. Nanotechnology, 2007, 18(25): 255704.

    [39] [39] LI Y C, CHANG Y H, LIN Y F, et al. Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors[J]. J Alloys Compd, 2007, 439(1/2): 367-375.

    [40] [40] DU P, HUANG X Y, YU J S. Facile synthesis of bifunctional Eu3+-activated NaBiF4 red-emitting nanoparticles for simultaneous white light-emitting diodes and field emission displays[J]. Chem Eng J, 2018, 337: 91-100.

    [41] [41] HAKEEM D A, PI J W, JUNG G W, et al. Structural and photoluminescence properties of La1-xNaCaGa3PZrO12 doped with Ce3+, Eu3+, and Tb3+[J]. Dyes Pigm, 2019, 160: 234-242.

    [42] [42] LV T, HUANG J Q, YANG C L, et al. Fundamental luminescence properties of Mn4+ activated Ca14Al10Zn6O35 phosphor[J]. J Mater Chem C, 2022, 10(26): 9773-9785

    Tools

    Get Citation

    Copy Citation Text

    XIAO Huangsheng, LIN Yuqing, DENG Zhiqiang, YANG Yujuan, CHEN Jian, DENG Zhonghua, HUANG Jiquan, GUO Wang. Fluorescence Properties of Ce3+/Eu3+ Co-doped Y3Al5O12 Transparent Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 784

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 29, 2023

    Accepted: --

    Published Online: Aug. 5, 2024

    The Author Email: Wang GUO (guowang@fjirsm.ac.cn; hjq@fjirsm.ac.cn)

    DOI:

    CSTR:32186.14.

    Topics