Journal of Innovative Optical Health Sciences, Volume. 18, Issue 1, 2550002(2025)
Neural-field-based image reconstruction for bioluminescence tomography
[1] S. P. Su, Y. Z. Yang, H. K. Chiang. Development of an integrated dual-modality 3D bioluminescence tomography and ultrasound imaging system for small animal tumor imaging. Opt. Express, 32, 5607-5620(2024).
[2] C. Darne, Y. Lu, E. M. Sevick-Muraca. Small animal fluorescence and bioluminescence tomography: A review of approaches, algorithms and technology update. Phys. Med. Biol., 59, R1-R64(2014).
[3] C. Qin, J. Feng, S. Zhu et al. Recent advances in bioluminescence tomography: Methodology and system as well as application. Laser Photon. Rev., 8, 94-114(2014).
[4] G. Zambito, C. Chawda, L. Mezzanotte. Emerging tools for bioluminescence imaging. Curr. Opin. Chem. Biol., 63, 86-94(2021).
[5] X. Xu, Z. Deng, D. Sforza et al. Characterization of a commercial bioluminescence tomography-guided system for pre-clinical radiation research. Med. Phys., 50, 6433-6453(2023).
[6] Z. Deng, X. Xu, I. Iordachita et al. Mobile bioluminescence tomography-guided system for pre-clinical radiotherapy research. Biomed. Opt. Express, 13, 4970-4989(2022).
[7] A. J. Syed, J. C. Anderson. Applications of bioluminescence in biotechnology and beyond. Chem. Soc. Rev., 50, 5668-5705(2021).
[8] J. Shi, T. S. Udayakumar, K. Xu et al. Bioluminescence tomography guided small-animal radiation therapy and tumor response assessment. Int. J. Radiat. Oncol. Biol. Sci., 102, 848-857(2018).
[9] P. Zhang, C. Ma, F. Song et al. A review of advances in imaging methodology in fluorescence molecular tomography. Phys. Med. Biol., 67, 10TR01(2022).
[10] X. Zhang, F. Liu, S. Zuo et al. Reconstruction of fluorophore concentration variation in dynamic fluorescence molecular tomography. IEEE Trans. Biomed. Eng., 62, 138-144(2014).
[11] D. A. Boas, J. P. Culver, J. J. Stott et al. Three-dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head. Opt. Express, 10, 159-170(2002).
[12] W. Bai, Y. Dong, Y. Zhang et al. Wide-field illumination diffuse optical tomography within a framework of single-pixel time-domain spatial frequency domain imaging. Opt. Express, 32, 6104-6120(2024).
[13] Y. Hu, Y. Wu, L. Li et al. Simultaneous reconstruction of 3D fluorescence distribution and object surface using structured light illumination and dual-camera detection. Opt. Express, 32, 15760-15773(2024).
[14] B. Zhang, W. Yin, H. Liu et al. Bioluminescence tomography with structural information estimated via statistical mouse atlas registration. Biomed. Opt. Express, 9, 3544-3558(2018).
[15] G. Zhang, J. Zhang, Y. Chen et al. Logarithmic total variation regularization via preconditioned conjugate gradient method for sparse reconstruction of bioluminescence tomography. Comput. Methods Programs Biomed., 243, 107863(2024).
[16] S. Jiang, J. Liu, G. Zhang et al. Reconstruction of fluorescence molecular tomography via a fused LASSO method based on group sparsity prior. IEEE Trans. Biomed. Eng., 66, 1361-1371(2018).
[17] Q. Zhang, H. Zhao, D. Chen et al. Source sparsity based primal-dual interior-point method for three-dimensional bioluminescence tomography. Opt. Commun., 284, 5871-5876(2011).
[18] H. Guo, Z. Hu, X. He et al. Non-convex sparse regularization approach framework for high multiple-source resolution in Cerenkov luminescence tomography. Opt. Express, 25, 28068-28085(2017).
[19] J. Yu, Q. Tang, Q. Li et al. Hybrid reconstruction method for multi-spectral bioluminescence tomography with log-sum regularization. J. Opt. Soc. Am. A, 37, 1060-1066(2020).
[20] X. He, J. Yu, X. Wang et al. Half thresholding pursuit algorithm for fluorescence molecular tomography. IEEE Trans. Biomed. Eng., 66, 1468-1476(2018).
[21] Y. Chen, M. Du, W. Li et al. ABPO-TVSCAD: Alternating Bregman proximity operators approach based on TVSCAD regularization for bioluminescence tomography. Phys. Med. Biol., 67, 215013(2022).
[22] H. Meng, K. Wang, Y. Gao et al. Adaptive gaussian weighted Laplace prior regularization enables accurate morphological reconstruction in fluorescence molecular tomography. IEEE Trans. Med. Imaging, 38, 2726-2734(2019).
[23] Y. Gao, K. Wang, S. Jiang et al. Bioluminescence tomography based on Gaussian weighted Laplace prior regularization for in vivo morphological imaging of glioma. IEEE Trans. Med. Imaging, 36, 2343-2354(2017).
[24] Y. Gao, K. Wang, Y. An et al. Nonmodel-based bioluminescence tomography using a machine-learning reconstruction strategy. Optica, 5, 1451-1454(2018).
[25] X. Zhang, X. Cao, P. Zhang et al. Self-training strategy based on finite element method for adaptive bioluminescence tomography reconstruction. IEEE Trans. Med. Imaging, 41, 2629-2643(2022).
[26] H. Meng, Y. Gao, X. Yang et al. K-nearest neighbor based locally connected network for fast morphological reconstruction in fluorescence molecular tomography. IEEE Trans. Med. Imaging, 39, 3019-3028(2020).
[27] Y. Zou, Y. Zeng, S. Li et al. Machine learning model with physical constraints for diffuse optical tomography. Biomed. Opt. Express, 12, 5720-5735(2021).
[28] C. Cao, A. Xiao, M. Cai et al. Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography. Biomed. Opt. Express, 13, 6284-6299(2022).
[29] L. Guo, F. Liu, C. Cai et al. 3D deep encoder–decoder network for fluorescence molecular tomography. Opt. Lett., 44, 1892-1895(2019).
[30] S. Li, J. Yu, X. He et al. VoxDMRN: A voxelwise deep max-pooling residual network for bioluminescence tomography reconstruction. Opt. Lett., 47, 1729-1732(2022).
[31] H. B. Yedder, B. Cardoen, M. Shokoufi et al. Deep orthogonal multi-wavelength fusion for tomogram-free diagnosis in diffuse optical imaging. Comput. Biol. Med., 178, 108676(2024).
[32] P. Zhang, G. Fan, T. Xing et al. UHR-DeepFMT: Ultra-high spatial resolution reconstruction of fluorescence molecular tomography based on 3-D fusion dual-sampling deep neural net-work. IEEE Trans. Med. Imaging, 40, 3217-3228(2021).
[33] F. Wang, S. H. Kim, Y. Zhao et al. High-speed time-domain diffuse optical tomography with a sensitivity equation-based neural network. IEEE Trans. Comput. Imaging, 9, 459-474(2023).
[34] N. Murad, M. C. Pan, Y. F. Hsu. Periodic-net: An end-to-end data driven framework for diffuse optical imaging of breast cancer from noisy boundary data. J. Biomed. Opt., 28, 026001(2023).
[35] X. Zhang, Y. Jia, J. Cui et al. Two-stage deep learning method for sparse-view fluorescence molecular tomography reconstruction. J. Opt. Soc. Am. A, 40, 1359-1371(2023).
[36] P. Zhang, F. Song, C. Ma et al. Robust reconstruction of fluorescence molecular tomography based on adaptive adversarial learning strategy. Phys. Med. Biol., 68, 04LT01(2023).
[37] P. Zhang, C. Ma, F. Song et al. Multi-branch attention prior based parameterized generative adversarial network for fast and accurate limited-projection reconstruction in fluorescence molecular tomography. Biomed. Opt. Express, 13, 5327-5343(2022).
[38] Y. Hua, Y. Jiang, K. Liu et al. Interpretable model-driven projected gradient descent network for high-quality FDOT reconstruction. Opt. Lett., 47, 2538-2541(2022).
[39] H. Yi, R. Yang, Y. Wang et al. Enhanced model iteration algorithm with graph neural network for diffuse optical tomography. Biomed. Opt. Express, 15, 1910-1925(2024).
[40] Y. Jiang, K. Liu, W. Li et al. Deep background-mismodeling-learned reconstruction for high-accuracy fluorescence diffuse optical tomography. Opt. Lett., 48, 3359-3362(2023).
[41] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).
[42] O. Ronneberger, P. Fischer, T. Brox. U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention MICCAI, 234-241(2015).
[43] A. Vaswani, N. Shazeer, N. Parmar et al. Advances in Neural Information Processing Systems, 5998-6008(2017).
[44] Z. Zhao, F. Fan, W. Liao et al. Grounding and enhancing grid-based models for neural fields. Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, 19425-19435(2024).
[45] J. R. Shue, E. R. Chan, R. Po et al. 3D neural field generation using triplane diffusion. Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, 20875-20886(2023).
[46] Z. Chen, Z. Li, L. Song et al. NeuRBF: A neural fields representation with adaptive radial basis functions. Proc. IEEE/CVF Int. Conf. Computer Vision, 4182-4194(2023).
[47] Y. Strümpler, J. Postels, R. Yang et al. Implicit neural representations for image compression. European Conf. Computer Vision, 74-91(2022).
[48] B. Kerbl, G. Kopanas, T. Leimkühler et al. 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph., 42, 139(2023).
[49] S. R. Arridge. Optical tomography in medical imaging. Inverse Probl., 15, R41(1999).
[50] B. Dogdas, D. Stout, A. F. Chatziioannou et al. Digimouse: A 3D whole body mouse atlas from CT and cryosection data. Phys. Med. Biol., 52, 577-587(2007).
[51] G. Alexandrakis, F. R. Rannou, A. F. Chatziioannou. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: A computer simulation feasibility study. Phys. Med. Biol., 50, 4225-4241(2005).
[52] T. Wu, S. He, J. Liu et al. A brief overview of ChatGPT: The history, status quo and potential future development. IEEE/CAA J. Autom. Sin., 10, 1122-1136(2023).
Get Citation
Copy Citation Text
Xuanxuan Zhang, Xu Cao, Jiulou Zhang, Lin Zhang, Guanglei Zhang. Neural-field-based image reconstruction for bioluminescence tomography[J]. Journal of Innovative Optical Health Sciences, 2025, 18(1): 2550002
Category: Research Articles
Received: Aug. 22, 2024
Accepted: Oct. 10, 2024
Published Online: Feb. 21, 2025
The Author Email: Zhang Guanglei (guangleizhang@buaa.edu.cn)