Journal of Innovative Optical Health Sciences, Volume. 18, Issue 1, 2550007(2025)

Multi-bandwidth reconstruction for photoacoustic tomography using cascade U-net

Zezheng Qin1,3、§, Lingyu Ma1,3、§, Zhigang Lei1,3,4, Yiming Ma1,2,3, Weiwei Fu5,6、*, and Mingjian Sun1,2,3、**
Author Affiliations
  • 1School of Astronautics, Harbin Institute of Technology, Harbin 150000, P. R. China
  • 2School of Information Science and Engineering, Harbin Institute of Technology, Weihai 264200, P. R. China
  • 3Harbin Institute of Technology Suzhou Research Institute, Suzhou 215000, P. R. China
  • 4WEGO Holding Co., Ltd., Weihai 264209, P. R. China
  • 5School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine University of Science and Technology of China, Hefei, Anhui, P. R. China
  • 6Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, Jiangsu, P. R. China
  • show less
    References(38)

    [1] L. V. Wang, J. Yao. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods, 13, 627-638(2016).

    [2] Y. Zhou, J. Yao, L. V. Wang. Tutorial on photoacoustic tomography. J. Biomed. Opt., 21, 061007-061007(2016).

    [3] L. V. Wang, S. Hu. Photoacoustic tomography: In vivo imaging from organelles to organs. Science, 335, 1458-1462(2012).

    [4] Y. Liu et al. Photoacoustic elastography based on laser-excited shear wave. J. Innov. Opt. Health Sci., 17, 2350031(2024).

    [5] T. Chen et al. Dedicated photoacoustic imaging instrument for human periphery blood vessels: A new paradigm for understanding the vascular health. IEEE Transa. Biomed. Eng., 69, 1093-1100(2021).

    [6] I. Stoffels et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci. Transl. Med., 7, 317ra199-317ra199(2015).

    [7] G. Diot et al. Multispectral optoacoustic tomography (MSOT) of human breast cancer. Clin. Cancer Res., 23, 6912-6922(2017).

    [8] L. Lin et al. Single-breath-hold photoacoustic computed tomography of the breast. Nat. Commun., 9, 2352(2018).

    [9] Z. Qin et al. The sparse array elements selection in sparse imaging of circular-array photoacoustic tomography. J. Innov. Opt. Health Sci., 15, 2250030(2022).

    [10] H. Lan et al. Photoacoustic classification of tumor model morphology based on support vector machine: A simulation and phantom study. IEEE J. Sel. Top. Quantum Electron., 25, 1-9(2018).

    [11] F. Ye, S. Yang, D. Xing. Three-dimensional photoacoustic imaging system in line confocal mode for breast cancer detection. Appl. Phys. Lett., 97(2010).

    [12] Z. Qin et al. Convolutional sparse coding for compressed sensing photoacoustic CT reconstruction with partially known support. Biomed. Opt. Express, 15, 524-539(2024).

    [13] J. Yao et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods, 12, 407-410(2015).

    [14] J. H. Liu et al. Design, fabrication and testing of a dual-band photoacoustic transducer. Ultrason. Imaging, 30, 217-227(2008).

    [15] H. Wang et al. A multi-frequency PMUT array based on ceramic PZT for endoscopic photoacoustic imaging. Int. Conf. Solid-State Sensors, Actuators and Microsystems (Transducers), 30-33(2021).

    [16] A. Chekkoury et al. Optical mesoscopy without the scatter: Broadband multispectral optoacoustic mesoscopy. Biomed. Opt. Express, 6, 3134-3148(2015).

    [17] M. A. Kalkhoran, F. Varray, D. Vray. Dual frequency band annular probe for volumetric pulse-echo optoacoustic imaging. Phys. Procedia, 70, 1104-1108(2015).

    [18] J. Gateau, A. Chekkoury, V. Ntziachristos. Ultra-wideband three-dimensional optoacoustic tomography. Opt. Lett., 38, 4671-4674(2013).

    [19] M. Xu, L. V. Wang. Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction. Phys. Rev. E, 67, 056605(2003).

    [20] R. K. W. Chee et al. Multifrequency interlaced CMUTs for photoacoustic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 64, 391-401(2016).

    [21] G. Ku et al. Multiple-bandwidth photoacoustic tomography. Phys. Med. Biol., 49, 1329(2004).

    [22] A. Chekkoury, J. Gateau, V. Ntziachristos. Multiple bandwidth volumetric optoacoustic tomography using conventional ultrasound linear arrays. European Conf. Biomedical Optics. Optica Publishing Group, 880003(2013).

    [23] Y. Cai et al. Broadband stack-layer 3 MHz–11 MHz dual-frequency ultrasound transducers for photoacoustic imaging. IEEE Int. Ultrasonics Symp., IUS, 1-3(2022).

    [24] G. Wang et al. Image reconstruction is a new frontier of machine learning. IEEE Trans. Med. Imaging, 37, 1289-1296(2018).

    [25] H. M. Zhang, B. Dong. A review on deep learning in medical image reconstruction. J. Oper. Res. Soc. China, 8, 311-340(2020).

    [26] K. H. Jin et al. Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process., 26, 4509-4522(2017).

    [27] D. Seong et al. Three-dimensional reconstructing undersampled photoacoustic microscopy images using deep learning. Photoacoustics, 29, 100429(2023).

    [28] H. Lan et al. Deep learning enabled real-time photoacoustic tomography system via single data acquisition channel. Photoacoustics, 22, 100270(2021).

    [29] S. Zheng et al. Deep learning framework for three-dimensional surface reconstruction of object of interest in photoacoustic tomography. Opt. Express, 32, 6037-6061(2024).

    [30] K. T. Hsu, S. Guan, P. V. Chitnis. Fast iterative reconstruction for photoacoustic tomography using learned physical model: Theoretical validation. Photoacoustics, 29, 100452(2023).

    [31] H. Lan et al. Deep learning enabled real-time photoacoustic tomography system via single data acquisition channel. Photoacoustics, 22, 100270(2021).

    [32] S. Guan et al. Limited-view and sparse photoacoustic tomography for neuroimaging with deep learning. Sci. Rep., 10, 8510(2020).

    [33] S. Gutta et al. Deep neural network-based bandwidth enhancement of photoacoustic data. J. Biomed. Opt., 22, 116001-116001(2017).

    [34] O. Ronneberger et al. U-Net: Convolutional networks for biomedical image segmentation. Proc. Int. Conf. Medical Image Computing and Computer-Assisted Intervention, 24-241(2015).

    [35] M. Lingyu et al. Triple-path feature transform network for ring-array photoacoustic tomography image reconstruction. J. Innov. Opt. Health Sci., 17, 2350038(2024).

    [36] T. Tong et al. Domain transform network for photoacoustic tomography from limited-view and sparsely sampled data. Photoacoustics, 19, 100190(2020).

    [37] N. Ge, W. Guo, Y. Wang. Globally consistent image inpainting based on WGAN-GP network optimization. IEEE Int. Conf. Signal Processing, ICSP, 1, 70-75(2022).

    [38] I. Gulrajani et al. Improved training of Wasserstein GANs. Adv. Neural Inf. Process. Syst., 30(2017).

    Tools

    Get Citation

    Copy Citation Text

    Zezheng Qin, Lingyu Ma, Zhigang Lei, Yiming Ma, Weiwei Fu, Mingjian Sun. Multi-bandwidth reconstruction for photoacoustic tomography using cascade U-net[J]. Journal of Innovative Optical Health Sciences, 2025, 18(1): 2550007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Aug. 21, 2024

    Accepted: Oct. 18, 2024

    Published Online: Feb. 21, 2025

    The Author Email: Fu Weiwei (fuww@sibet.ac.cn), Sun Mingjian (sunmingjian@hit.edu.cn)

    DOI:10.1142/S1793545825500075

    Topics