Journal of Innovative Optical Health Sciences, Volume. 18, Issue 1, 2550007(2025)
Multi-bandwidth reconstruction for photoacoustic tomography using cascade U-net
Photoacoustic imaging (PAI) employs short laser pulses to excite absorbing materials, producing ultrasonic waves spanning a broad spectrum of frequencies. These ultrasonic waves are captured surrounding the sample and utilized to reconstruct the initial pressure distribution tomographically. Despite the wide spectral range of the laser-generated photoacoustic signal, an individual transducer can only capture a limited segment of the signal due to its constrained bandwidth. Herein, we have developed a multi-bandwidth ring array photoacoustic computed tomography (PACT) system, incorporating a probe with two semi-ring arrays: one for high frequency and the other for low frequency. Utilizing the two semi-ring array PAIs, we have devised a specialized deep learning model, comprising two serially connected U-net architectures, to autonomously generate multi-bandwidth full-view PAIs. Preliminary results from simulations and in vivo experiments illustrate the system’s robust multi-bandwidth imaging capabilities, achieving an excellent PSNR of 34.78 dB and a structural similarity index measure (SSIM) of 0.94 in the high-frequency reconstruction of complex mouse abdominal structures. This innovative PACT system is notable for its capability to seamlessly acquire multi-bandwidth full-view PAIs, thereby advancing the application of PAI technology in the biomedical domain.
Get Citation
Copy Citation Text
Zezheng Qin, Lingyu Ma, Zhigang Lei, Yiming Ma, Weiwei Fu, Mingjian Sun. Multi-bandwidth reconstruction for photoacoustic tomography using cascade U-net[J]. Journal of Innovative Optical Health Sciences, 2025, 18(1): 2550007
Category: Research Articles
Received: Aug. 21, 2024
Accepted: Oct. 18, 2024
Published Online: Feb. 21, 2025
The Author Email: Fu Weiwei (fuww@sibet.ac.cn), Sun Mingjian (sunmingjian@hit.edu.cn)