Journal of the Chinese Ceramic Society, Volume. 52, Issue 3, 906(2024)

Phosphor Ceramics for Laser-Driven Lighting

PANG Qirui... LI Shuxing and XIE Rongjun* |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(101)

    [1] [1] SCHUBERT E F, KIM J K. Solid-state light sources getting smart[J]. Science, 2005, 308(5726): 1274-1278.

    [2] [2] AKASAKI I. Key inventions in the history of nitride-based blue LED and LD[J]. J Cryst Growth, 2007, 300(1): 2-10.

    [3] [3] CRAWFORD M H. LEDs for solid-state lighting: Performance challenges and recent advances[J]. IEEE J Sel Top Quantum Electron, 2009, 15(4): 1028-1040.

    [4] [4] YE S, XIAO F, PAN Y X, et al. Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties[J]. Mater Sci Eng R Rep, 2010, 71(1): 1-34.

    [5] [5] LUO X B, HU R, LIU S, et al. Heat and fluid flow in high-power LED packaging and applications[J]. Prog Energy Combust Sci, 2016, 56: 1-32.

    [6] [6] NAKAMURA S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes[J]. Science, 1998, 281(5379): 955-961.

    [7] [7] NEUMANN A, WIERER J J J, DAVIS W, et al. Four-color laser white illuminant demonstrating high color-rendering quality[J]. Opt Express, 2011, 19(Suppl 4): A982-A990.

    [8] [8] KANG T W, PARK K W, RYU J H, et al. Strong thermal stability of Lu3Al5O12:Ce3+ single crystal phosphor for laser lighting[J]. J Lumin, 2017, 191: 35-39.

    [9] [9] XU J, THORSETH A, XU C, et al. Investigation of laser-induced luminescence saturation in a single-crystal YAG:Ce phosphor: Towards unique architecture, high saturation threshold, and high-brightness laser-driven white lighting[J]. J Lumin, 2019, 212: 279-285.

    [10] [10] FUJITA S, SAKAMOTO A, TANABE S. Luminescence characteristics of YAG glass-ceramic phosphor for white LED[J]. IEEE J Sel Top Quantum Electron, 2008, 14(5): 1387-1391.

    [11] [11] YOSHIMURA K, ANNEN K, FUKUNAGA H, et al. Optical properties of solid-state laser lighting devices using SiAlON phosphor-glass composite films as wavelength converters[J]. Jpn J Appl Phys, 2016, 55(4): 042102.

    [12] [12] DENG T L, HUANG L H, LI S X, et al. Thermally robust orange-red-emitting color converters for laser-driven warm white light with high overall optical properties[J]. Laser Photonics Rev, 2022, 16(6): 2100722.

    [13] [13] NISHIURA S, TANABE S, FUJIOKA K, et al. Properties of transparent Ce:YAG ceramic phosphors for white LED[J]. Opt Mater, 2011, 33(5): 688-691.

    [14] [14] DORENBOS P. Thermal quenching of Eu2+ 5d-4f luminescence in inorganic compounds[J]. J Phys: Condens Matter, 2005, 17(50): 8103-8111.

    [15] [15] BACHMANN V, RONDA C, MEIJERINK A. Temperature quenching of yellow Ce3+ luminescence in YAG:Ce[J]. Chem Mater, 2009, 21(10): 2077-2084.

    [16] [16] ZHENG P, LI S X, TAKEDA T, et al. Unraveling the luminescence quenching of phosphors under high-power-density excitation[J]. Acta Mater, 2021, 209: 116813.

    [17] [17] ALLISON S W, GILLIES G T, RONDINONE A J, et al. Nanoscale thermometry via the fluorescence of YAG:Ce phosphor particles: Measurements from 7 to 77C[J]. Nanotechnology, 2003, 14(8): 859-863.

    [18] [18] MARCEDDU M, ANEDDA A, CORPINO R, et al. Energy transfer in Ce and Eu co-doped Barium thiogallate: A photoluminescence characterization[J]. Mater Sci Eng B, 2008, 146(1/3): 216-219.

    [19] [19] MüLLER M, JüSTEL T. Energy transfer and unusual decay behaviour of BaCa2Si3O9:Eu2+, Mn2+ phosphor[J]. Dalton Trans, 2015, 44(22): 10368-10376.

    [20] [20] LI S X, WANG L, HIROSAKI N, et al. Color conversion materials for high-brightness laser-driven solid-state lighting[J]. Laser Photonics Rev, 2018, 12(12): 1800173.

    [21] [21] YU J B, SI S C, LIU Y, et al. High-power laser-driven phosphor-in-glass for excellently high conversion efficiency white light generation for special illumination or display backlighting[J]. J Mater Chem C, 2018, 6(30): 8212-8218.

    [22] [22] XU Y R, LI S X, ZHENG P, et al. A search for extra-high brightness laser-driven color converters by investigating thermally-induced luminance saturation[J]. J Mater Chem C, 2019, 7(37): 11449-11456.

    [23] [23] HENCKE H, THOMAS JR J R, HASSELMAN D P H. Role of material properties in the thermal-stress fracture of brittle ceramics subjected to conductive heat transfer[J]. J Am Ceram Soc, 1984, 67(6): 393-398.

    [24] [24] CHEN I W, WANG X H. Sintering dense nanocrystalline ceramics without final-stage grain growth[J]. Nature, 2000, 404(6774): 168-171.

    [25] [25] YAO J, ZHU Q, LI J G. Garnet transparent ceramic film of Y3Al5O12:Eu3+ fabricated through an interface reaction of layered rare-earth hydroxide nanosheets on amorphous alumina[J]. Appl Surf Sci, 2022, 579: 152226.

    [26] [26] FENG T, SHI J L, JIANG D Y. Preparation of transparent Ce:YSAG ceramic and its optical properties[J]. J Eur Ceram Soc, 2008, 28(13): 2539-2543.

    [27] [27] ZHU Q Q, MENG Y, ZHANG H, et al. YAGG:Ce phosphor-in-YAG ceramic: An efficient green color converter suitable for high-power blue laser lighting[J]. ACS Appl Electron Mater, 2020, 2(8): 2644-2650.

    [28] [28] PRICHA I T, ROSSNER W, MOOS R. Pressureless sintering of luminescent CaAlSiN3:Eu ceramics[J]. J Ceram Sci Technol, 2015, 6(1): 63-68.

    [29] [29] DAI J W, CAO M Q, KOU H M, et al. Fabrication and properties of transparent Tb:YAG fluorescent ceramics with different doping concentrations[J]. Ceram Int, 2016, 42(12): 13812-13818.

    [30] [30] CHOI S, BIN K S, JUNGHYEON Y, et al. Fabrication and analysis of luminous properties of phosphor ceramic for laser headlamp in automotive application[J]. J Korean Cryst Growth Cryst Technol, 2020, 30(2): 73-77.

    [31] [31] LI X, LI Q. YAG ceramic processed by slip casting via aqueous slurries[J]. Ceram Int, 2008, 34(2): 397-401.

    [32] [32] ZHANG L, SUN B H, GU L C, et al. Enhanced light extraction of single-surface textured YAG:Ce transparent ceramics for high power white LEDs[J]. Appl Surf Sci, 2018, 455: 425-432.

    [33] [33] WANG B, LING J R, ZHOU Y F, et al. YAG:Ce3+, Mn2+ transparent ceramics prepared by gel-casting for warm white LEDs[J]. J Lumin, 2019, 213: 421-426.

    [34] [34] HU S, LIU Y L, ZHANG Y L, et al. 3D printed ceramic phosphor and the photoluminescence property under blue laser excitation[J]. J Eur Ceram Soc, 2019, 39(8): 2731-2738.

    [35] [35] AMINAKA K, TATAMI J, IIJIMA M, et al. Transparency and photoluminescence of gas-pressure sintered Lu-α-SiAlON:Ce3+ ceramics[J]. ECS J Solid State Sci Technol, 2022, 11(7): 076001.

    [36] [36] ZYCH E, BRECHER C, LINGERTAT H. Depletion of high-energy carriers in YAG optical ceramic materials[J]. Spectrochim Acta A Mol Biomol Spectrosc, 1998, 54A(11): 1771-1777.

    [37] [37] SHI Yun, PAN Yubai, FENG Xiqi, et al. J Inorg Mater, 2010, 25(2): 125-128.

    [38] [38] CHEN S M, YANG S H, CHEN L, et al. MgO-Y2O3:Eu composite ceramics with high quantum yield and excellent thermal performance[J]. J Eur Ceram Soc, 2023, 43(8): 3553-3562.

    [39] [39] LI S X, ZHU Q Q, WANG L, et al. CaAlSiN3:Eu2+ translucent ceramic: A promising robust and efficient red color converter for solid state laser displays and lighting[J]. J Mater Chem C, 2016, 4(35): 8197-8205.

    [40] [40] SUN J, LIN H, ZHANG D W. YAG:Ce-Al2O3 composite/spinel dual-layer ceramic phosphor for high luminous density light converting application[J]. Mater Res Express, 2019, 6(11): 116212.

    [41] [41] PANG Q L, LIU W L, SHEN J X, et al. Improved optical properties of BN powder shielded Ce:YAG ceramics prepared by hot pressing[J]. Ceram Int, 2022, 48(16): 23821-23827.

    [42] [42] JOSHI B, KSHETRI Y K, GYAWALI G, et al. Transparent Mg-α/β-Sialon:Eu2+ ceramics as a yellow phosphor for pc-WLED[J]. J Alloys Compd, 2015, 631: 38-45.

    [43] [43] LIU X, CHEN B W, TU B T, et al. Variation of structure and photoluminescence properties of Ce3+ doped MgAlON transparent ceramics with different doping content[J]. Materials, 2017, 10(7): 792.

    [44] [44] CHEN Y C, NIEN Y T. Microstructure and photoluminescence properties of laser sintered YAG:Ce phosphor ceramics[J]. J Eur Ceram Soc, 2017, 37(1): 223-227.

    [45] [45] HOSTA?A J, COVA F, PIANCASTELLI A, et al. Fabrication and luminescence of Ce-doped GGAG transparent ceramics, effect of sintering parameters and additives[J]. Ceram Int, 2019, 45(17): 23283-23288.

    [46] [46] TAKAHASHI T, SANO Y, TATAMI J, et al. Transparent Y-α SiAlON:Ce3+ ceramics fabricated by low-temperature liquid phase sintering technique[J]. ECS J Solid State Sci Technol, 2021, 10(8): 086008.

    [47] [47] ZHOU Z H, LI X Y, HUANG Q F, et al. Effect of CaO additive on the densification of MgO and MgO-YGAG:Ce ceramics[J]. Ceram Int, 2023, 49(11): 17340-17347.

    [48] [48] SONG Y H, JI E K, JEONG B W, et al. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting[J]. Sci Rep, 2016, 6: 31206.

    [49] [49] WANG Y B, HUANG X Y, CHENG Z Q, et al. Al2O3-Ce:YAG composite phosphor ceramics for white laser lighting: Novel preparation and regulatable properties[J]. J Am Ceram Soc, 2023, 106(10): 5933-5943.

    [50] [50] SMOTHERS W J, REYNOLDS H J. Sintering and grain growth of alumina[J]. J Am Ceram Soc, 1954, 37(12): 588-595.

    [51] [51] NIEN Y T, YOU J K. Improved thermal quenching of Y3Al5O12:Ce phosphor ceramics with silica addition[J]. J Alloys Compd, 2016, 678: 1-4.

    [52] [52] JI E K, SONG Y H, BAK S H, et al. The design of a ceramic phosphor plate with functional materials for application in high power LEDs[J]. J Mater Chem C, 2015, 3(48): 12390-12393.

    [53] [53] JOSHI B, LEE S W. Luminescence properties of Eu2+, Gd3+ and Pr3+ doped translucent Sialon phosphors[J]. J Rare Earths, 2015, 33(11): 1142-1147.

    [54] [54] LI K, SHI Y, JIA F Q, et al. Low etendue yellow-green solid-state light generation by laser-pumped LuAG:Ce ceramic[J]. IEEE Photonics Technol Lett, 2018, 30(10): 939-942.

    [55] [55] CHEN J E, TANG Y R, YI X Z, et al. Fabrication of (Tb, Gd)3Al5O12:Ce3+ phosphor ceramics for warm white light-emitting diodes application[J]. Opt Mater Express, 2019, 9(8): 3333.

    [56] [56] LIU W L, SHEN J X, PANG Q L, et al. Optical properties of YMASG:Ce fluorescent ceramics prepared by hot-pressure sintering[J]. Ceram Int, 2023, 49(13): 21941-21946.

    [57] [57] ARREDONDO A, DESIRENA H, MORENO I, et al. Dual color tuning in Ce3+-doped oxyfluoride ceramic phosphor plate for white LED application[J]. J Am Ceram Soc, 2019, 102(3): 1425-1434.

    [58] [58] LIU X, ZHOU H Y, HU Z W, et al. Transparent Ce:GdYAG ceramic color converters for high-brightness white LEDs and LDs[J]. Opt Mater, 2019, 88: 97-102.

    [59] [59] LIU Y F, LIU S A, SUN P, et al. Transparent ceramics enabling high luminous flux and efficacy for the next-generation high-power LED light[J]. ACS Appl Mater Interfaces, 2019, 11(24): 21697-21701.

    [60] [60] WU H J, WU H, PAN G H, et al. Cyan-green-emitting Ca3Sc2Si3O12:Ce3+ transparent ceramics: A promising color converter for high-brightness laser lighting[J]. J Adv Ceram, 2023, 12(9): 1731-1741.

    [61] [61] YE S R, YIN X M, CHAO J M, et al. Effect of Lu3+ doping on photoluminescence characteristics of Y2.691Gd0.3Al5O12:0.3%Ce phosphor ceramics[J]. Opt Mater, 2023, 143: 114210.

    [62] [62] WIEG A T, PENILLA E H, HARDIN C L, et al. Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting[J]. APL Mater, 2016, 4(12): 126105.

    [63] [63] LIU X, CHEN B W, TU B T, et al. Characterization in activators’ distribution and photoluminescence properties of Ce3+ doped MgAlON transparent fluorescent ceramic[J]. J Eur Ceram Soc, 2016, 36(11): 2801-2805.

    [64] [64] PENG X L, LI S X, LIU Z H, et al. Highly thermal conductive red-emitting AlN-CaAlSiN3:Eu2+ composite phosphor ceramics for high-power laser-driven lighting[J]. J Eur Ceram Soc, 2021, 41(11): 5650-5657.

    [65] [65] LI Y K, LIU Y F, LUO Z H, et al. Ce/Mn/Cr:Y3Al5O12 phosphor ceramics for white LED and LD lighting with a high color rendering index[J]. Ceram Int, 2023, 49(15): 24703-24711.

    [66] [66] LI K, WANG H, LIU X, et al. Mn2+ activated MgAlON transparent ceramic: A new green-emitting transparent ceramic phosphor for high-power white LED[J]. J Eur Ceram Soc, 2017, 37(13): 4229-4233.

    [67] [67] LIU S, SUN P, LIU Y F, et al. Warm white light with a high color-rendering index from a single Gd3Al4GaO12:Ce3+ transparent ceramic for high-power LEDs and LDs[J]. ACS Appl Mater Interfaces, 2019, 11(2): 2130-2139.

    [68] [68] ZHANG Y L, LIU Y L, YANG L, et al. Preparation and luminescence properties of thermally stable Mn4+ doped spinel red-emitting ceramic phosphors[J]. J Lumin, 2020, 220: 117016.

    [69] [69] ZHENG R L, LUO D W, YUAN Y, et al. Dy3+/Ce3+ codoped YAG transparent ceramics for single-composition tunable white-light phosphor[J]. J Am Ceram Soc, 2015, 98(10): 3231-3235.

    [70] [70] TANG Y R, ZHOU S M, YI X Z, et al. The characterization of Ce/Pr-doped YAG phosphor ceramic for the white LEDs[J]. J Alloys Compd, 2018, 745: 84-89.

    [71] [71] HU S, LU C H, QIN X P, et al. Color tuning of Lu3Al5O12:Dy3+ ceramic-based white light-emitting phosphors via Yb incorporation[J]. J Eur Ceram Soc, 2017, 37(1): 229-237.

    [72] [72] AO G, TANG Y R, YI X Z, et al. Red emission generation in Ce3+/Mn2+ co-doping Y3Al5O12 phosphor ceramics for warm white lighting emitting diodes[J]. J Alloys Compd, 2019, 798: 695-699.

    [73] [73] JOSHI B, HOON J S, KSHETRI Y K, et al. Transparent Sialon phosphor ceramic plates for white light emitting diodes applications[J]. Ceram Int, 2018, 44(18): 23116-23124.

    [74] [74] FENG S W, QIN H M, WU G Q, et al. Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application[J]. J Eur Ceram Soc, 2017, 37(10): 3403-3409.

    [75] [75] SAWADA T, FUJI H, YAGASAKI K, et al. Thermal properties of AlN-Ce:YAG composite ceramic phosphor for laser lighting[J]. Opt Rev, 2022, 29(3): 276-285.

    [76] [76] TANG Y R, ZHOU S M, CHEN C, et al. Composite phase ceramic phosphor of Al?O?-Ce:YAG for high efficiency light emitting[J]. Opt Express, 2015, 23(14): 17923-17928.

    [77] [77] HU S, ZHANG Y L, WANG Z J, et al. Phase composition, microstructure and luminescent property evolutions in “light-scattering enhanced” Al2O3-Y3Al5O12:Ce3+ ceramic phosphors[J]. J Eur Ceram Soc, 2018, 38(9): 3268-3278.

    [78] [78] LI S X, ZHU Q Q, TANG D M, et al. Al2O3-YAG:Ce composite phosphor ceramic: A thermally robust and efficient color converter for solid state laser lighting[J]. J Mater Chem C, 2016, 4(37): 8648-8654.

    [79] [79] COZZAN C, LHEUREUX G, O'DEA N, et al. Stable, heat-conducting phosphor composites for high-power laser lighting[J]. ACS Appl Mater Interfaces, 2018, 10(6): 5673-5681.

    [80] [80] LIU Z H, LI S X, HUANG Y H, et al. Composite ceramic with high saturation input powder in solid-state laser lighting: Microstructure, properties, and luminous emittances[J]. Ceram Int, 2018, 44(16): 20232-20238.

    [81] [81] WANG J C, TANG X Y, ZHENG P, et al. Thermally self-managing YAG:Ce-Al2O3 color converters enabling high-brightness laser-driven solid state lighting in a transmissive configuration[J]. J Mater Chem C, 2019, 7(13): 3901-3908.

    [82] [82] JIANG R J, CHEN J, TIAN Y N, et al. Phase composition design of high performance Al2O3-YAG:Ce ceramic phosphors for high-power laser lighting[J]. Opt Mater, 2022, 133: 113014.

    [83] [83] CHEN J, TANG Y R, YI X Z, et al. Al2O3-Ce:Tb3Al5O12 composite ceramic phosphors for high efficiency warm white light illumination[J]. Opt Mater, 2019, 97: 109384.

    [84] [84] LIU X, QIAN X L, HU Z W, et al. Al2O3-Ce:GdYAG composite ceramic phosphors for high-power white light-emitting-diode applications[J]. J Eur Ceram Soc, 2019, 39(6): 2149-2154.

    [85] [85] CHENG Z Q, LIU A, CHEN X R, et al. Composition and luminescence properties of highly robust green-emitting LuAG:Ce/Al2O3 composite phosphor ceramics for high-power solid-state lighting[J]. J Adv Ceram, 2023, 12(3): 625-633.

    [86] [86] LIU X, QIAN X L, ZHENG P, et al. Preparation and optical properties of MgAl2O4-Ce:GdYAG composite ceramic phosphors for white LEDs[J]. J Eur Ceram Soc, 2019, 39(15): 4965-4971.

    [87] [87] GU C, WANG X J, XIA C, et al. A new CaF2-YAG:Ce composite phosphor ceramic for high-power and high-color-rendering WLEDs[J]. J Mater Chem C, 2019, 7(28): 8569-8574.

    [88] [88] PENG X L, LI S X, ZHANG B H, et al. Microstructure tailoring of red-emitting AlN-CaAlSiN3:Eu2+ composite phosphor ceramics with higher optical properties for laser lighting[J]. J Eur Ceram Soc, 2022, 42(7): 3339-3344.

    [89] [89] ZHANG Y L, HU S, WANG Z J, et al. Pore-existing Lu3Al5O12:Ce ceramic phosphor: An efficient green color converter for laser light source[J]. J Lumin, 2018, 197: 331-334.

    [90] [90] ZHENG P, LI S X, WEI R, et al. Unique design strategy for laser-driven color converters enabling superhigh-luminance and high-directionality white light[J]. Laser Photonics Rev, 2019, 13(10): 1900147.

    [91] [91] YI X Z, ZHOU S M, CHEN C, et al. Fabrication of Ce:YAG, Ce, Cr:YAG and Ce:YAG/Ce, Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs[J]. Ceram Int, 2014, 40(5): 7043-7047.

    [92] [92] HU C, SHI Y, FENG X Q, et al. YAG:Ce/(Gd, Y)AG:Ce dual-layered composite structure ceramic phosphors designed for bright white light-emitting diodes with various CCT[J]. Opt Express, 2015, 23(14): 18243.

    [93] [93] LIU X, ZHU Y X, CHENG Z Q, et al. Spectrum regulation of YAG:Ce/YAG:Cr/YAG:Pr phosphor ceramics with barcode structure prepared by tape casting[J]. J Am Ceram Soc, 2023, 23(14): 18243-18255.

    [94] [94] PRICHA I, ROSSNER W, MOOS R. Layered ceramic phosphors based on CaAlSiN3:Eu and YAG:Ce for white light-emitting diodes[J]. J Am Ceram Soc, 2016, 99(1): 211-217.

    [95] [95] ZHOU T, LIU X L, LIU Q S, et al. Highly thermal stable and color tunable composite fluorescent ceramics for high-power white LEDs[J]. Ceram Int, 2022, 48(13): 18716-18722.

    [96] [96] YE S R, LI Y K, QIANG M, et al. Color tunable composite phosphor ceramics based on SrAlSiN3:Eu2+/Lu3Al5O12:Ce3+ for high-power and high-color-rendering-index white LEDs/LDs lighting[J]. Materials, 2023, 16(17): 6007.

    [97] [97] PARK H K, OH J R, DO Y R. 2D SiNx photonic crystal coated Y3Al5O12:Ce3+ ceramic plate phosphor for high-power white light-emitting diodes[J]. Opt Express, 2011, 19(25): 25593-25601.

    [98] [98] PARK H K, YOON S W, CHOI D Y, et al. Fabrication of wafer-scale TiO2 nanobowl arrays via a scooping transfer of polystyrene nanospheres and atomic layer deposition for their application in photonic crystals[J]. J Mater Chem C, 2013, 1(9): 1732-1738.

    [99] [99] WAGNER A, RATZKER B, KALABUKHOV S, et al. Enhanced external luminescence quantum efficiency of ceramic phosphors by surface roughening[J]. J Lumin, 2019, 213: 454-458.

    [100] [100] WOLFRUM S M. Dry pressing of surface-modified powders[J]. J Mater Sci Lett, 1988, 7(10): 1130-1132.

    [101] [101] LI S X, AMACHRAA M, CHEN C, et al. Efficient near-infrared phosphors discovered by parametrizing the Eu(II) 5d-to-4f energy gap[J]. Matter, 2022, 5(6): 1924-1936.

    Tools

    Get Citation

    Copy Citation Text

    PANG Qirui, LI Shuxing, XIE Rongjun. Phosphor Ceramics for Laser-Driven Lighting[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 906

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 29, 2023

    Accepted: --

    Published Online: Aug. 5, 2024

    The Author Email: Rongjun XIE (rjxie@xmu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics