Optics and Precision Engineering, Volume. 30, Issue 19, 2390(2022)

Cross-scale infrared pedestrian detection based on dynamic feature optimization mechanism

Shuai HAO... Tian HE, Xu MA*, Lei YANG and Siya SUN |Show fewer author(s)
Author Affiliations
  • College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an710054, China
  • show less
    Figures & Tables(12)
    Structure diagram of DFOM-CSNet network
    Structure diagram of LPM module
    Comparison of images before-and-after infrared feature dynamic optimization
    Comparison of feature pyramid structures
    Structure of cross-scale feature fusion module
    Results of ablation experiment
    Comparison of detection results
    • Table 1. [in Chinese]

      View table
      View in Article

      Table 1. [in Chinese]

      算法1动态特征优化机制

      Input: 红外图像Iir,最大优化迭代次数Max_iteration,寻优参数α,搜索种群XAttackerXChaserXBarrierXDriver.

      1. LPM模块

       构造四叉树-贝塞尔插值算子重构初始红外背景图像;

       引入引导滤波平滑噪音并得到红外亮度特征图像ILir和红外背景图像IBir

      2. EG-Chimp优化模型

       构建动态特征优化图像:IOir=α×ILir+IBir

       设计目标函数对参数α寻优:F=min{LSF+λLCON}

      Whilet<Max_iteration

        For each chimp

         计算各人猿种群的位置向量;

         更新f,m,c,a,D

        End For

         For each search chimp

          更新目前搜索种群的位置向量;

         End For

          更新XAttackerXChaserXBarrierXDriver

          t=t+1

      End While

      Output: 动态特征优化图像IOir

    • Table 1. Software and hardware platform configuration

      View table
      View in Article

      Table 1. Software and hardware platform configuration

      ConfigurationVersion parameter
      Operating systemMicrosoft Windows 10
      GPUNVIDIA GeForce GTX 1660 Ti
      CPUIntel Core i5-10400F@2.90 GHz×6 CPUs
      CUDA11.1
      Deep learning frameworkPytorch
    • Table 2. Average values of evaluation indexes for 1 000 images

      View table
      View in Article

      Table 2. Average values of evaluation indexes for 1 000 images

      ImageEntropyBrennerDCTVariance
      IR5.654.72×1064.69×1031.06×108
      Optimized IR6.042.84×1074.87×1031.92×108
    • Table 3. Improved module validation

      View table
      View in Article

      Table 3. Improved module validation

      ComponentMethod
      GIOU
      CIOU
      DFOM
      YOLOv5
      CSFF-BiFPN
      mAP@.5/%88.388.889.489.190.289.889.590.7
    • Table 4. Comparison results of different detection algorithms

      View table
      View in Article

      Table 4. Comparison results of different detection algorithms

      MethodBackbonemAP@.5/%mAP@.5:.95/%Time/s
      Faster-RCNNResNet5072.90.163
      SSDVGG75.10.087
      RetinaNetResNet5074.836.30.140
      Sparse R-CNNResNet5084.342.90.148
      VarifocalNetResNet5086.245.30.172
      TOODResNet5088.946.10.156
      YOLOv4-CLAHECSPDarkNet87.945.90.042
      I-YOLODarkNet88.945.80.024
      TC-DetDarkNet89.246.20.149
      CSNet(Ours)Focus+ CSPDarkNet89.546.20.011
      DFOM-CSNet(Ours)Focus+ CSPDarkNet90.746.80.013
    Tools

    Get Citation

    Copy Citation Text

    Shuai HAO, Tian HE, Xu MA, Lei YANG, Siya SUN. Cross-scale infrared pedestrian detection based on dynamic feature optimization mechanism[J]. Optics and Precision Engineering, 2022, 30(19): 2390

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jun. 17, 2022

    Accepted: --

    Published Online: Oct. 27, 2022

    The Author Email: MA Xu (414548542@qq.com)

    DOI:10.37188/OPE.20223019.2390

    Topics