Journal of Inorganic Materials, Volume. 39, Issue 8, 853(2024)

Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design

Jie HUANG, Liuying WANG*, Bin WANG*, Gu LIU, Weichao WANG, and Chaoqun GE
Author Affiliations
  • Zhijian Laboratory, Rocket Force University of Engineering, Xi’an 710025, China
  • show less
    References(127)

    [1] B HUANG, H HU, S LIM et al. Gradient FeNi-SiO2 films on SiC fiber for enhanced microwave absorption performance. Journal of Alloys and Compounds(2022).

    [2] C LIU, X LIAO. Collagen fiber/Fe3O4/polypyrrole nanocomposites for absorption-type electromagnetic interference shielding and radar stealth. ACS Applied Nano Materials(2020).

    [3] X CHAI, D ZHU, Y LIU et al. Silver-modified chromium(III) oxide as multi-band compatible stealth materials for visual/ infrared stealth and radar wave transmission. Composites Science and Technology(2021).

    [4] D WU, G D CHEN, C Y GE et al. DFT+U analysis on stability of low-index facets in hexagonal LaCoO3 perovskite: effect of Co3+ spin states. Chinese Journal of Chemical Physics(2017).

    [5] Y DING, X ZHAO, Q LI et al. Broadband electromagnetic wave absorption properties and mechanism of MoS2/rGO nanocomposites. Materials Chemistry Frontiers(2021).

    [6] X CHEN, K ZHONG, T SHI et al. Urchin-like polyaniline/ magnetic carbon sphere hybrid with excellent electromagnetic wave absorption performance. Synthetic Metals(2019).

    [7] G GUAN, G GAO, J XIANG et al. CoFe2/BaTiO3 hybrid nanofibers for microwave absorption. ACS Applied Nano Materials(2020).

    [8] M GREEN, L TIAN, P XIANG et al. FeP nanoparticles: a new material for microwave absorption. Materials Chemistry Frontiers(2018).

    [9] B WANG, Q WU, Y FU et al. A review on carbon/magnetic metal composites for microwave absorption. Journal of Materials Science & Technology(2021).

    [10] H FU, Y GUO, J YU et al. Tuning the shell thickness of core-shell α-Fe3O4@SiO2 nanoparticles to promote microwave absorption. Chinese Chemical Letters(2022).

    [11] Z WU, Y DENG, Z MENG et al. Microwave absorbing properties of novel SiC/Cf composites containing SiC array modified coating. Journal of Inorganic Materials(2021).

    [12] G ZHAO, H LV, Y ZHOU et al. Self-assembled sandwich-like MXene-derived nanocomposites for enhanced electromagnetic wave absorption. ACS Applied Materials & Interfaces(2018).

    [13] J CHEN, W YE, S WANG et al. Design of two-dimensional organic- inorganic heterostructures for high-performance electromagnetic wave absorption. Journal of Materials Chemistry C(2023).

    [14] B DU, M CAI, X WANG et al. Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites. Journal of Advanced Ceramics(2021).

    [15] L CUI, C TIAN, L TANG et al. Space-confined synthesis of core-shell BaTiO3@carbon microspheres as a high-performance binary dielectric system for microwave absorption. ACS Applied Materials & Interfaces(2019).

    [16] Z ZHANG, Z XIONG, Y YAO et al. Constructing conductive network in hybrid perovskite for a highly efficient microwave absorption system. Advanced Functional Materials(2022).

    [17] M GREEN, Z LIU, P XIANG et al. Doped, conductive SiO2 nanoparticles for large microwave absorption. Light, Science & Applications(2018).

    [18] F WANG, Y LIU, H ZHAO et al. Controllable seeding of nitrogen- doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics. Chemical Engineering Journal(2022).

    [19] Z WU, C JIN, Z YANG et al. General biotemplating of hierarchically ultra-vesicular microspheres for superior microwave absorption. Chemical Engineering Journal(2022).

    [20] J HUANG, L WANG, B WANG et al. Unraveling the carbon dot bridges in oxidized carbon nanotubes for efficient microwave absorption. Chemical Engineering Journal(2023).

    [21] M QIN, L ZHANG, X ZHAO et al. Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application. Advanced Science(2021).

    [22] L ZHOU, E K LIU. Application fields and development research of electromagnetic wave absorbing materials. China Plant Engineering(2022).

    [23] M XU, Y ZHANG, J ZHANG et al. Spontaneous formation of graphene-like stripes on high-index diamond C(331) surface. Nanoscale Research Letters(2012).

    [24] Z T XI, J XIONG, B B QIAO et al. Dielectric Tunable materials and their microwave applications. Chinese Polymer Bulletin(2021).

    [25] F CHEN, S ZHANG, B MA et al. Bimetallic CoFe-Mof@Ti3C2Tx MXene derived composites for broadband microwave absorption. Chemical Engineering Journal(2022).

    [26] H LI, Y GUO. High microwave absorption characteristic nanomaterial preparation and mechanism analysis. Journal of Alloys and Compounds(2018).

    [27] Y LI, X LIU, R LIU et al. Improved microwave absorption properties by atomic-scale substitutions. Carbon(2018).

    [28] A LING, J PAN, G TAN et al. Thin and broadband Ce2Fe17N3-δ/ MWCNTs composite absorber with efficient microwave absorption. Journal of Alloys and Compounds(2019).

    [29] M SUN, R MOLLAABBASI, B LI et al. Effects of contact angle on single and multiscale bubble motions in the aluminum reduction cell. Industrial & Engineering Chemistry Research(2019).

    [30] Y DUAN, Z XIAO, X YAN et al. Enhanced electromagnetic microwave absorption property of peapod-like MnO@carbon nanowires. ACS Applied Materials & Interfaces(2018).

    [31] X LIU, K CAO, Y CHEN et al. Shape-dependent magnetic and microwave absorption properties of iron oxide nanocrystals. Materials Chemistry and Physics(2017).

    [32] X CHEN, M YANG, X ZHAO et al. Tailoring superhydrophobic PDMS/CeFe2O4/MWCNTs nanocomposites with conductive network for highly efficient microwave absorption. Chemical Engineering Journal(2022).

    [33] X WANG, Y LU, T ZHU et al. CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chemical Engineering Journal(2020).

    [34] Y LI, T GAO, W ZHANG et al. Fe@CNx nanocapsules for microwave absorption at gigahertz frequency. ACS Applied Nano Materials(2019).

    [35] L YU, Y ZHU, Y FU. Waxberry-like carbon@polyaniline microspheres with high-performance microwave absorption. Applied Surface Science(2018).

    [36] G HE, Y DUAN, H PANG. Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano- Micro Letters(2020).

    [37] S AYUB, B H GUAN, F AHMAD et al. Optimization of magnetite with modified graphene for microwave absorption properties. Journal of Alloys and Compounds(2023).

    [38] X J CUI, Q R JIANG, C S WANG et al. Encapsulating FeCo alloys by single layer graphene to enhance microwave absorption performance. Materials Today Nano(2021).

    [39] X SUN, X ZHAO, X ZHANG et al. TiO2 nanosheets/Ti3C2Tx MXene 2D/2D composites for excellent microwave absorption. ACS Applied Nano Materials(2023).

    [40] L ZHOU, H XU, G SU et al. Tunable electromagnetic and broadband microwave absorption of SiO2-coated FeSiAl absorbents. Journal of Alloys and Compounds(2021).

    [41] M CAI, A SHUI, X WANG et al. A facile fabrication and high- performance electromagnetic microwave absorption of ZnO nanoparticles. Journal of Alloys and Compounds(2020).

    [42] M GREEN, L TIAN, P XIANG et al. Co2P nanoparticles for microwave absorption. Materials Today Nano(2018).

    [43] B DAI, B ZHAO, X XIE et al. Novel two-dimensional Ti3C2Tx MXenes/nano-carbon sphere hybrids for high-performance microwave absorption. Journal of Materials Chemistry C(2018).

    [44] P MIAO, T ZHANG, T WANG et al. A two-dimensional semiconductive metal-organic framework for highly efficient microwave absorption. Chinese Journal of Chemistry(2022).

    [45] C LEI, Y DU. Tunable dielectric loss to enhance microwave absorption properties of flakey FeSiAl /ferrite composites. Journal of Alloys and Compounds(2020).

    [46] Q CAO, J ZHANG, H ZHANG et al. Dual-surfactant templated hydrothermal synthesis of CoSe2 hierarchical microclews for dielectric microwave absorption. Journal of Advanced Ceramics(2022).

    [47] B HUANG, F CHEN, Y SHEN et al. Preparation, characterization, and evaluation of pyraclostrobin nanocapsules by in situ polymerization. Nanomaterials(2022).

    [48] L WANG, H GUAN, S SU et al. Magnetic FeOx/biomass carbon composites with broadband microwave absorption properties. Journal of Alloys and Compounds(2022).

    [49] P MIAO, J CHEN, J CHEN et al. Review and perspective of tailorable metal-organic framework for enhancing microwave absorption. Chinese Journal of Chemistry(2023).

    [50] Y ZHANG, Y ZHANG, Y LI et al. BaTiO3@C core-shell nanoparticle/paraffin composites for wide-band microwave absorption. ACS Applied Nano Materials(2021).

    [51] X LI, L T ZHU, T KASUGA et al. Chitin-derived-carbon nanofibrous aerogel with anisotropic porous channels and defective carbon structures for strong microwave absorption. Chemical Engineering Journal(2022).

    [52] H ZHAO, Y CHENG, W LIU et al. Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano- Micro Letters(2019).

    [53] X LI, S YIN, L CAI et al. Sea-urchin-like NiCo2S4 modified MXene hybrids with enhanced microwave absorption performance. Chemical Engineering Journal(2023).

    [54] Y LIAO, G HE, Y DUAN. Morphology-controlled self-assembly synthesis and excellent microwave absorption performance of MnO2 microspheres of fibrous flocculation. Chemical Engineering Journal(2021).

    [55] H LIN, M GREEN, L J XU et al. Microwave absorption of organic metal halide nanotubes. Advanced Materials Interfaces(2020).

    [56] J LI, Y HONG, S HE et al. A neutron diffraction investigation of high valent doped barium ferrite with wideband tunable microwave absorption. Journal of Advanced Ceramics(2022).

    [57] J GAO, Z MA, F LIU et al. Preparation and microwave absorption properties of Gd-Co ferrite@silica@carbon multilayer core-shell structure composites. Chemical Engineering Journal(2022).

    [58] S DONG, P HU, X LI et al. NiCo2S4 nanosheets on 3D wood- derived carbon for microwave absorption. Chemical Engineering Journal(2020).

    [59] N V LAKSHMI, P TAMBE. EMI shielding effectiveness of graphene decorated with graphene quantum dots and silver nanoparticles reinforced PVDF nanocomposites. Composite Interfaces(2017).

    [60] W T ZHANG, E DING, W X ZHANG et al. Microstructure controllable polyimide/MXene composite aerogels for high- temperature thermal insulation and microwave absorption. Journal of Materials Chemistry C(2023).

    [61] Q CHEN, L LI, Z WANG et al. Synthesis and enhanced microwave absorption performance of CIP@SiO2@Mn0.6Zn0.4Fe2O4 ferrite composites. Journal of Alloys and Compounds(2019).

    [62] Y CHENG, J CAO, Y LI et al. The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core-shell hybrids toward microwave absorption. ACS Sustainable Chemistry & Engineering(2018).

    [63] C TIAN, Q YAO, Z TONG et al. The influence of Nd substitution on microstructural, magnetic, and microwave absorption properties of BiFeO3 nanopowders. Journal of Alloys and Compounds(2021).

    [64] J DENG, X ZHANG, B ZHAO et al. Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. Journal of Materials Chemistry C(2018).

    [65] Z CHENG, R WANG, Y CAO et al. Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/ VO2 composite aerogel. Advanced Functional Materials(2022).

    [66] Z F GU, Z C YU, B HONG et al. Effect of lanthanum substitution on microstructures, magnetic properties and microwave absorption properties of SrCo2Z hexaferrites. Journal of Alloys and Compounds(2023).

    [67] B KUANG, Y DOU, Z WANG et al. Enhanced microwave absorption properties of Co-doped SiC at elevated temperature. Applied Surface Science(2018).

    [68] J LUO, L YUE, H JI et al. Investigation on the optimization, design and microwave absorption properties of BaTb0.2Eu0.2Fe11.6O19/PANI decorated on reduced graphene oxide nanocomposites. Journal of Materials Science(2019).

    [69] H WEI, X YIN, F JIANG et al. Optimized design of high- temperature microwave absorption properties of CNTs/Sc2Si2O7 ceramics. Journal of Alloys and Compounds(2020).

    [70] T HAN, R LUO, G CUI et al. Effect of SiC nanowires on the high- temperature microwave absorption properties of SiCf/SiC composites. Journal of the European Ceramic Society(2019).

    [71] M F ELMAHAISHI, R S AZIS, I ISMAIL et al. A review on electromagnetic microwave absorption properties: their materials and performance. Journal of Materials Research and Technology, 2188(2022).

    [72] L FENG, D ZHAO, J YU et al. Two-dimensional transition metal dichalcogenides based composites for microwave absorption applications: a review. Journal of Physics: Energy, 012001(2023).

    [73] Z JIANG, H SI, Y LI et al. Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Research(2022).

    [74] B LI, B MAO, T HE et al. Preparation and microwave absorption properties of double-layer hollow reticulated SiC foam. ACS Applied Electronic Materials, 2140(2019).

    [75] M YU, J H LIU, S M LI et al. Preparation and electromagnetic property for microwave absorbing of nickel nanowires. Acta Metallurgica Sinica(2007).

    [76] M WEIDNER, A FUCHS, T J M BAYER et al. Defect modulation doping. Advanced Functional Materials(2019).

    [77] M Y TORIYAMA, J QU, G J SNYDER et al. Defect chemistry and doping of BiCuSeO. Journal of Materials Chemistry A(2021).

    [78] B G ZHAI, Y M HUANG. Extending the afterglow of Tb3+ doped CaAl2O4 to 8 hours via the control of doping concentration. Journal of Luminescence(2022).

    [79] S Y HE, H L SHI, J YANG et al. A comparative investigation into the thermoelectric properties of doped graphene nanoribbons in different doping manners. Diamond and Related Materials(2023).

    [80] A SWARNKAR, W J MIR, A NAG. Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X = Cl, Br, I) perovskites?. ACS Energy Letters(2018).

    [81] X LIU, Y HUANG, L DING et al. Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption. Journal of Materials Science & Technology(2021).

    [82] S N SARANGI, G K PRADHAN, D SAMAL. Band gap engineering in SnO2 by Pb doping. Journal of Alloys and Compounds(2018).

    [83] F WANG, G B JI. Research progress of microstructure control and electromagnetic wave absorbing properties of perovskite oxide. Journal of Inorganic Chemistry(2021).

    [84] C F J LAU, M ZHANG, X DENG et al. Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells. ACS Energy Letters(2017).

    [85] B ZHAO, Y DU, Z YAN et al. Structural defects in phase- regulated high-entropy oxides toward superior microwave absorption properties. Advanced Functional Materials(2023).

    [86] G LIU, W WANG, L WANG et al. Effect of annealing temperature on the electromagnetic properties of La0.8Sr0.2MnO3 prepared by Sol-Gel process. Journal of Materials Science: Materials in Electronics(2022).

    [87] Y A SALAWU, Y A SALAWU, H J KIM et al. Bi-stability and orientation change of a thin α-Fe2O3 layer on a ε-Fe2O3 (004) surface. ACS Omega(2019).

    [88] R MANI, H JIANG, S K GUPTA et al. Role of synthesis method on luminescence properties of europium(II, III) ions in β-Ca2SiO4: probing local site and structure. Inorganic Chemistry(2018).

    [89] Q ZHANG, Q SONG, X WANG et al. Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance. Energy & Environmental Science(2018).

    [90] Y H WU, X Y ZHU, W J ZHAO et al. Corrosion mechanism of graphene coating with different defect levels. Journal of Alloys and Compounds(2019).

    [91] X CHEN, Y CHEN, J HUANG et al. Phase regulation and surface passivation of stable α-CsPbI3 nanocrystals with dual-mode luminescence via synergistic effects of ligands. Journal of Physical Chemistry C(2022).

    [92] Q ZENG, T FENG, S TAO et al. Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): the nomenclature. Light: Science & Applications(2021).

    [93] J H MALIK, M K AHMAD, I ASSADULLAH et al. Electronic structure, growth and properties of hydrothermally derived crystalline Cu2MnSnS4 quantum dots: optimization of physiochemical parameters and electrochemical performance. Applied Physics A(2023).

    [94] T ZHANG, J ZHU, Y ZHAI et al. A novel mechanism for red emission carbon dots: hydrogen bond dominated molecular states emission. Nanoscale(2017).

    [95] M KRELINA. Quantum technology for military applications. EPJ Quantum Technology(2021).

    [96] D FRONING, P CZYSZ. Advanced Technology and Breakthrough Physics for 2025 and 2050 Military Aerospace Vehicles.

    [97] L ZHANG, F LIU, T WANG et al. Design of saline gel coil for inner heating of electrolyte solution and liquid foods under induced electric field. Foods(2022).

    [98] P R CHEN, M S HOANG, K Y LAI et al. Bifunctional metal oleate as an alternative method to remove surface oxide and passivate surface defects of aminophosphine-based InP quantum dots. Nanomaterials(2022).

    [99] N LYU, J WANG, H SHEN et al. Graphene quantum dots interfacial-decorated hierarchical Ni/PS core/shell nanocapsules for tunable microwave absorption. Journal of Alloys and Compounds(2020).

    [100] M HE, H CHEN, H PENG et al. Ultralight Ti3C2Tx-derivative chrysanthemum-like Na2Ti3O7/Ti3C2Tx MXene quantum dots 3D/ 0D heterostructure with advanced microwave absorption performance. Chemical Engineering Journal(2023).

    [101] R J C FERNANDES, C A B MAGALHÃES, A R O RODRIGUES et al. Photodeposition of silver on zinc/calcium ferrite nanoparticles: a contribution to efficient effluent remediation and catalyst reutilization. Nanomaterials(2021).

    [102] K J SINGH, T AHMED, P GAUTAM et al. Recent advances in two-dimensional quantum dots and their applications. Nanomaterials(2021).

    [103] Z GAO, B XU, M MA et al. Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption. Composites Part B: Engineering(2019).

    [104] J KOBAK, T SMOLEŃSKI, M GORYCA et al. Designing quantum dots for solotronics. Nature Communications(2014).

    [105] G WU, Y CHENG, Z YANG et al. Design of carbon sphere/ magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chemical Engineering Journal(2018).

    [106] L SHEN, R CHEN, D ZHANG et al. High-performance perovskite photovoltaics by heterovalent substituted mixed perovskites. Advanced Functional Materials(2022).

    [107] S SILVI, M BARONCINI, ROSA M LA et al. Interfacing luminescent quantum dots with functional molecules for optical sensing applications. Topics in Current Chemistry(2016).

    [108] X XU, Y PAN, Y ZHONG et al. Ruddlesden-popper perovskites in electrocatalysis. Materials Horizons(2020).

    [109] W CHI, S K BANERJEE. Application of perovskite quantum dots as an absorber in perovskite solar cells. Angewandte Chemie International Edition(2022).

    [110] J FENG, Y ZONG, Y SUN et al. Optimization of porous FeNi3/ N-GN composites with superior microwave absorption performance. Chemical Engineering Journal(2018).

    [111] Y QI, L QI, L LIU et al. Facile synthesis of lightweight carbonized hydrochars decorated with dispersed ZnO nanocrystals and enhanced microwave absorption properties. Carbon(2019).

    [112] Z SU, W ZHANG, J LU et al. Oxygen-vacancy-rich Fe3O4/carbon nanosheets enabling high-attenuation and broadband microwave absorption through the integration of interfacial polarization and charge-separation polarization. Journal of Materials Chemistry A(2022).

    [113] X LIU, X LU, H GUAN et al. Rational design of ZnO/ZnO nanocrystal-modified rGO foam composites with wide-frequency microwave absorption properties. Ceramics International(2021).

    [114] Q LIU, X XU, W XIA et al. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80hierarchical structures studied by electron holography. Nanoscale(2015).

    [115] S Q LV, P Z HAN, X J ZHANG et al. Graphene-wrapped pine needle-like cobalt nanocrystals constructed by cobalt nanorods for efficient microwave absorption performance. RSC Advances(2021).

    [116] G WANG, Y CHANG, L WANG et al. Synthesis, characterization and microwave absorption properties of Fe3O4/Co core/shell-type nanoparticles. Advanced Powder Technology(2012).

    [117] X LIU, Y MA, Q ZHANG et al. Facile synthesis of Fe3O4/C composites for broadband microwave absorption properties. Applied Surface Science(2018).

    [118] T LIU, N LIU, S ZHAI et al. Tailor-made core/shell/shell-like Fe3O4@SiO2@PPy composites with prominent microwave absorption performance. Journal of Alloys and Compounds(2019).

    [119] J WU, Y ZHAO, X ZHAO et al. Core-shell nanowires comprising silver@polypyrrole-derived pyrolytic carbon for high-efficiency microwave absorption. Journal of Materials Science(2022).

    [120] Y QIAN, X MENG, H LIU et al. Magnetic field-induced synthesis of one-dimensional nickel nanowires for enhanced microwave absorption. Advanced Materials Interfaces(2023).

    [121] X YUAN, W HUANG, X ZHANG et al. Carbon-coated Mn4N nanowires with abundant internal voids for microwave absorption. ACS Applied Nano Materials(2019).

    [122] J KUANG, P JIANG, X HOU et al. Dielectric permittivity and microwave absorption properties of SiC nanowires with different lengths. Solid State Sciences(2019).

    [123] L Q DUAN, C XU, X Q DAI et al. Nano-porous carbon wrapped SiC nanowires with tunable dielectric properties for electromagnetic applications. Materials & Design(2020).

    [124] M W CHEN, W J XIE, H P QIU. Research progress on continuous carbon fiber reinforced silicon carbide ceramic matrix composite. Advanced Ceramics(2016).

    [125] H HU, Y ZHENG, K REN et al. Position selective dielectric polarization enhancement in CNT based heterostructures for highly efficient microwave absorption. Nanoscale(2021).

    [126] Q ZHOU, C QI, T SHI et al. 3D printed carbon based all-dielectric honeycomb metastructure for thin and broadband electromagnetic absorption. Composites Part A: Applied Science and Manufacturing(2023).

    [127] N KUMAR, S R VADERA. Stealth materials and technology for airborne systems//Aerospace materials and material technologies.

    Tools

    Get Citation

    Copy Citation Text

    Jie HUANG, Liuying WANG, Bin WANG, Gu LIU, Weichao WANG, Chaoqun GE. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design[J]. Journal of Inorganic Materials, 2024, 39(8): 853

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 21, 2023

    Accepted: --

    Published Online: Dec. 12, 2024

    The Author Email: WANG Liuying (lywangxa@163.com), WANG Bin (wangbin403403@126.com)

    DOI:10.15541/jim20230589

    Topics