Journal of Inorganic Materials, Volume. 39, Issue 8, 853(2024)
[1] HUANG B, HU H, LIM S et al. Gradient FeNi-SiO2 films on SiC fiber for enhanced microwave absorption performance[J]. Journal of Alloys and Compounds(2022).
[2] LIU C, LIAO X. Collagen fiber/Fe3O4/polypyrrole nanocomposites for absorption-type electromagnetic interference shielding and radar stealth[J]. ACS Applied Nano Materials(2020).
[3] CHAI X, ZHU D, LIU Y et al. Silver-modified chromium(III) oxide as multi-band compatible stealth materials for visual/ infrared stealth and radar wave transmission[J]. Composites Science and Technology(2021).
[4] WU D, CHEN G D, GE C Y et al. DFT+
[5] DING Y, ZHAO X, LI Q et al. Broadband electromagnetic wave absorption properties and mechanism of MoS2/rGO nanocomposites[J]. Materials Chemistry Frontiers(2021).
[6] CHEN X, ZHONG K, SHI T et al. Urchin-like polyaniline/ magnetic carbon sphere hybrid with excellent electromagnetic wave absorption performance[J]. Synthetic Metals(2019).
[7] GUAN G, GAO G, XIANG J et al. CoFe2/BaTiO3 hybrid nanofibers for microwave absorption[J]. ACS Applied Nano Materials(2020).
[8] GREEN M, TIAN L, XIANG P et al. FeP nanoparticles: a new material for microwave absorption[J]. Materials Chemistry Frontiers(2018).
[9] WANG B, WU Q, FU Y et al. A review on carbon/magnetic metal composites for microwave absorption[J]. Journal of Materials Science & Technology(2021).
[10] FU H, GUO Y, YU J et al. Tuning the shell thickness of core-shell
[11] WU Z, DENG Y, MENG Z et al. Microwave absorbing properties of novel SiC/Cf composites containing SiC array modified coating[J]. Journal of Inorganic Materials(2021).
[12] ZHAO G, LV H, ZHOU Y et al. Self-assembled sandwich-like MXene-derived nanocomposites for enhanced electromagnetic wave absorption[J]. ACS Applied Materials & Interfaces(2018).
[13] CHEN J, YE W, WANG S et al. Design of two-dimensional organic- inorganic heterostructures for high-performance electromagnetic wave absorption[J]. Journal of Materials Chemistry C(2023).
[14] DU B, CAI M, WANG X et al. Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites[J]. Journal of Advanced Ceramics(2021).
[15] CUI L, TIAN C, TANG L et al. Space-confined synthesis of core-shell BaTiO3@carbon microspheres as a high-performance binary dielectric system for microwave absorption[J]. ACS Applied Materials & Interfaces(2019).
[16] ZHANG Z, XIONG Z, YAO Y et al. Constructing conductive network in hybrid perovskite for a highly efficient microwave absorption system[J]. Advanced Functional Materials(2022).
[17] GREEN M, LIU Z, XIANG P et al. Doped, conductive SiO2 nanoparticles for large microwave absorption[J]. Light, Science & Applications(2018).
[18] WANG F, LIU Y, ZHAO H et al. Controllable seeding of nitrogen- doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics[J]. Chemical Engineering Journal(2022).
[19] WU Z, JIN C, YANG Z et al. General biotemplating of hierarchically ultra-vesicular microspheres for superior microwave absorption[J]. Chemical Engineering Journal(2022).
[20] HUANG J, WANG L, WANG B et al. Unraveling the carbon dot bridges in oxidized carbon nanotubes for efficient microwave absorption[J]. Chemical Engineering Journal(2023).
[21] QIN M, ZHANG L, ZHAO X et al. Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application[J]. Advanced Science(2021).
[22] ZHOU L, LIU E K. Application fields and development research of electromagnetic wave absorbing materials[J]. China Plant Engineering(2022).
[23] XU M, ZHANG Y, ZHANG J et al. Spontaneous formation of graphene-like stripes on high-index diamond C(331) surface[J]. Nanoscale Research Letters(2012).
[24] XI Z T, XIONG J, QIAO B B et al. Dielectric Tunable materials and their microwave applications[J]. Chinese Polymer Bulletin(2021).
[25] CHEN F, ZHANG S, MA B et al. Bimetallic CoFe-Mof@Ti3C2T
[26] LI H, GUO Y. High microwave absorption characteristic nanomaterial preparation and mechanism analysis[J]. Journal of Alloys and Compounds(2018).
[27] LI Y, LIU X, LIU R et al. Improved microwave absorption properties by atomic-scale substitutions[J]. Carbon(2018).
[28] LING A, PAN J, TAN G et al. Thin and broadband Ce2Fe17N3-
[29] SUN M, MOLLAABBASI R, LI B et al. Effects of contact angle on single and multiscale bubble motions in the aluminum reduction cell[J]. Industrial & Engineering Chemistry Research(2019).
[30] DUAN Y, XIAO Z, YAN X et al. Enhanced electromagnetic microwave absorption property of peapod-like MnO@carbon nanowires[J]. ACS Applied Materials & Interfaces(2018).
[31] LIU X, CAO K, CHEN Y et al. Shape-dependent magnetic and microwave absorption properties of iron oxide nanocrystals[J]. Materials Chemistry and Physics(2017).
[32] CHEN X, YANG M, ZHAO X et al. Tailoring superhydrophobic PDMS/CeFe2O4/MWCNTs nanocomposites with conductive network for highly efficient microwave absorption[J]. Chemical Engineering Journal(2022).
[33] WANG X, LU Y, ZHU T et al. CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption[J]. Chemical Engineering Journal(2020).
[34] LI Y, GAO T, ZHANG W et al. Fe@CN
[35] YU L, ZHU Y, FU Y. Waxberry-like carbon@polyaniline microspheres with high-performance microwave absorption[J]. Applied Surface Science(2018).
[36] HE G, DUAN Y, PANG H. Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon[J]. Nano- Micro Letters(2020).
[37] AYUB S, GUAN B H, AHMAD F et al. Optimization of magnetite with modified graphene for microwave absorption properties[J]. Journal of Alloys and Compounds(2023).
[38] CUI X J, JIANG Q R, WANG C S et al. Encapsulating FeCo alloys by single layer graphene to enhance microwave absorption performance[J]. Materials Today Nano(2021).
[39] SUN X, ZHAO X, ZHANG X et al. TiO2 nanosheets/Ti3C2T
[40] ZHOU L, XU H, SU G et al. Tunable electromagnetic and broadband microwave absorption of SiO2-coated FeSiAl absorbents[J]. Journal of Alloys and Compounds(2021).
[41] CAI M, SHUI A, WANG X et al. A facile fabrication and high- performance electromagnetic microwave absorption of ZnO nanoparticles[J]. Journal of Alloys and Compounds(2020).
[42] GREEN M, TIAN L, XIANG P et al. Co2P nanoparticles for microwave absorption[J]. Materials Today Nano(2018).
[43] DAI B, ZHAO B, XIE X et al. Novel two-dimensional Ti3C2T
[44] MIAO P, ZHANG T, WANG T et al. A two-dimensional semiconductive metal-organic framework for highly efficient microwave absorption[J]. Chinese Journal of Chemistry(2022).
[45] LEI C, DU Y. Tunable dielectric loss to enhance microwave absorption properties of flakey FeSiAl /ferrite composites[J]. Journal of Alloys and Compounds(2020).
[46] CAO Q, ZHANG J, ZHANG H et al. Dual-surfactant templated hydrothermal synthesis of CoSe2 hierarchical microclews for dielectric microwave absorption[J]. Journal of Advanced Ceramics(2022).
[47] HUANG B, CHEN F, SHEN Y et al. Preparation, characterization, and evaluation of pyraclostrobin nanocapsules by
[48] WANG L, GUAN H, SU S et al. Magnetic FeO
[49] MIAO P, CHEN J, CHEN J et al. Review and perspective of tailorable metal-organic framework for enhancing microwave absorption[J]. Chinese Journal of Chemistry(2023).
[50] ZHANG Y, ZHANG Y, LI Y et al. BaTiO3@C core-shell nanoparticle/paraffin composites for wide-band microwave absorption[J]. ACS Applied Nano Materials(2021).
[51] LI X, ZHU L T, KASUGA T et al. Chitin-derived-carbon nanofibrous aerogel with anisotropic porous channels and defective carbon structures for strong microwave absorption[J]. Chemical Engineering Journal(2022).
[52] ZHAO H, CHENG Y, LIU W et al. Biomass-derived porous carbon-based nanostructures for microwave absorption[J]. Nano- Micro Letters(2019).
[53] LI X, YIN S, CAI L et al. Sea-urchin-like NiCo2S4 modified MXene hybrids with enhanced microwave absorption performance[J]. Chemical Engineering Journal(2023).
[54] LIAO Y, HE G, DUAN Y. Morphology-controlled self-assembly synthesis and excellent microwave absorption performance of MnO2 microspheres of fibrous flocculation[J]. Chemical Engineering Journal(2021).
[55] LIN H, GREEN M, XU L J et al. Microwave absorption of organic metal halide nanotubes[J]. Advanced Materials Interfaces(2020).
[56] LI J, HONG Y, HE S et al. A neutron diffraction investigation of high valent doped barium ferrite with wideband tunable microwave absorption[J]. Journal of Advanced Ceramics(2022).
[57] GAO J, MA Z, LIU F et al. Preparation and microwave absorption properties of Gd-Co ferrite@silica@carbon multilayer core-shell structure composites[J]. Chemical Engineering Journal(2022).
[58] DONG S, HU P, LI X et al. NiCo2S4 nanosheets on 3D wood- derived carbon for microwave absorption[J]. Chemical Engineering Journal(2020).
[59] LAKSHMI N V, TAMBE P. EMI shielding effectiveness of graphene decorated with graphene quantum dots and silver nanoparticles reinforced PVDF nanocomposites[J]. Composite Interfaces(2017).
[60] ZHANG W T, DING E, ZHANG W X et al. Microstructure controllable polyimide/MXene composite aerogels for high- temperature thermal insulation and microwave absorption[J]. Journal of Materials Chemistry C(2023).
[61] CHEN Q, LI L, WANG Z et al. Synthesis and enhanced microwave absorption performance of CIP@SiO2@Mn0.6Zn0.4Fe2O4 ferrite composites[J]. Journal of Alloys and Compounds(2019).
[62] CHENG Y, CAO J, LI Y et al. The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core-shell hybrids toward microwave absorption[J]. ACS Sustainable Chemistry & Engineering(2018).
[63] TIAN C, YAO Q, TONG Z et al. The influence of Nd substitution on microstructural, magnetic, and microwave absorption properties of BiFeO3 nanopowders[J]. Journal of Alloys and Compounds(2021).
[64] DENG J, ZHANG X, ZHAO B et al. Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO[J]. Journal of Materials Chemistry C(2018).
[65] CHENG Z, WANG R, CAO Y et al. Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/ VO2 composite aerogel[J]. Advanced Functional Materials(2022).
[66] GU Z F, YU Z C, HONG B et al. Effect of lanthanum substitution on microstructures, magnetic properties and microwave absorption properties of SrCo2Z hexaferrites[J]. Journal of Alloys and Compounds(2023).
[67] KUANG B, DOU Y, WANG Z et al. Enhanced microwave absorption properties of Co-doped SiC at elevated temperature[J]. Applied Surface Science(2018).
[68] LUO J, YUE L, JI H et al. Investigation on the optimization, design and microwave absorption properties of BaTb0.2Eu0.2Fe11.6O19/PANI decorated on reduced graphene oxide nanocomposites[J]. Journal of Materials Science(2019).
[69] WEI H, YIN X, JIANG F et al. Optimized design of high- temperature microwave absorption properties of CNTs/Sc2Si2O7 ceramics[J]. Journal of Alloys and Compounds(2020).
[70] HAN T, LUO R, CUI G et al. Effect of SiC nanowires on the high- temperature microwave absorption properties of SiCf/SiC composites[J]. Journal of the European Ceramic Society(2019).
[71] ELMAHAISHI M F, AZIS R S, ISMAIL I et al. A review on electromagnetic microwave absorption properties: their materials and performance[J]. Journal of Materials Research and Technology, 2188(2022).
[72] FENG L, ZHAO D, YU J et al. Two-dimensional transition metal dichalcogenides based composites for microwave absorption applications: a review[J]. Journal of Physics: Energy, 012001(2023).
[73] JIANG Z, SI H, LI Y et al. Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption[J]. Nano Research(2022).
[74] LI B, MAO B, HE T et al. Preparation and microwave absorption properties of double-layer hollow reticulated SiC foam[J]. ACS Applied Electronic Materials, 2140(2019).
[75] YU M, LIU J H, LI S M et al. Preparation and electromagnetic property for microwave absorbing of nickel nanowires[J]. Acta Metallurgica Sinica(2007).
[76] WEIDNER M, FUCHS A, BAYER T J M et al. Defect modulation doping[J]. Advanced Functional Materials(2019).
[77] TORIYAMA M Y, QU J, SNYDER G J et al. Defect chemistry and doping of BiCuSeO[J]. Journal of Materials Chemistry A(2021).
[78] ZHAI B G, HUANG Y M. Extending the afterglow of Tb3+ doped CaAl2O4 to 8 hours
[79] HE S Y, SHI H L, YANG J et al. A comparative investigation into the thermoelectric properties of doped graphene nanoribbons in different doping manners[J]. Diamond and Related Materials(2023).
[80] SWARNKAR A, MIR W J, NAG A. Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X = Cl, Br, I) perovskites?[J]. ACS Energy Letters(2018).
[81] LIU X, HUANG Y, DING L et al. Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption[J]. Journal of Materials Science & Technology(2021).
[82] SARANGI S N, PRADHAN G K, SAMAL D. Band gap engineering in SnO2 by Pb doping[J]. Journal of Alloys and Compounds(2018).
[83] WANG F, JI G B. Research progress of microstructure control and electromagnetic wave absorbing properties of perovskite oxide[J]. Journal of Inorganic Chemistry(2021).
[84] LAU C F J, ZHANG M, DENG X et al. Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells[J]. ACS Energy Letters(2017).
[85] ZHAO B, DU Y, YAN Z et al. Structural defects in phase- regulated high-entropy oxides toward superior microwave absorption properties[J]. Advanced Functional Materials(2023).
[86] LIU G, WANG W, WANG L et al. Effect of annealing temperature on the electromagnetic properties of La0.8Sr0.2MnO3 prepared by Sol-Gel process[J]. Journal of Materials Science: Materials in Electronics(2022).
[87] SALAWU Y A, SALAWU Y A, KIM H J et al. Bi-stability and orientation change of a thin
[88] MANI R, JIANG H, GUPTA S K et al. Role of synthesis method on luminescence properties of europium(II, III) ions in
[89] ZHANG Q, SONG Q, WANG X et al. Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance[J]. Energy & Environmental Science(2018).
[90] WU Y H, ZHU X Y, ZHAO W J et al. Corrosion mechanism of graphene coating with different defect levels[J]. Journal of Alloys and Compounds(2019).
[91] CHEN X, CHEN Y, HUANG J et al. Phase regulation and surface passivation of stable
[92] ZENG Q, FENG T, TAO S et al. Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): the nomenclature[J]. Light: Science & Applications(2021).
[93] MALIK J H, AHMAD M K, ASSADULLAH I et al. Electronic structure, growth and properties of hydrothermally derived crystalline Cu2MnSnS4 quantum dots: optimization of physiochemical parameters and electrochemical performance[J]. Applied Physics A(2023).
[94] ZHANG T, ZHU J, ZHAI Y et al. A novel mechanism for red emission carbon dots: hydrogen bond dominated molecular states emission[J]. Nanoscale(2017).
[95] KRELINA M. Quantum technology for military applications[J]. EPJ Quantum Technology(2021).
[96] FRONING D, CZYSZ P[conf-proc]. Advanced Technology and Breakthrough Physics for 2025 and 2050 Military Aerospace Vehicles.
[97] ZHANG L, LIU F, WANG T et al. Design of saline gel coil for inner heating of electrolyte solution and liquid foods under induced electric field[J]. Foods(2022).
[98] CHEN P R, HOANG M S, LAI K Y et al. Bifunctional metal oleate as an alternative method to remove surface oxide and passivate surface defects of aminophosphine-based InP quantum dots[J]. Nanomaterials(2022).
[99] LYU N, WANG J, SHEN H et al. Graphene quantum dots interfacial-decorated hierarchical Ni/PS core/shell nanocapsules for tunable microwave absorption[J]. Journal of Alloys and Compounds(2020).
[100] HE M, CHEN H, PENG H et al. Ultralight Ti3C2T
[101] FERNANDES R J C, MAGALHÃES C A B, RODRIGUES A R O et al. Photodeposition of silver on zinc/calcium ferrite nanoparticles: a contribution to efficient effluent remediation and catalyst reutilization[J]. Nanomaterials(2021).
[102] SINGH K J, AHMED T, GAUTAM P et al. Recent advances in two-dimensional quantum dots and their applications[J]. Nanomaterials(2021).
[103] GAO Z, XU B, MA M et al. Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption[J]. Composites Part B: Engineering(2019).
[104] KOBAK J, SMOLEŃSKI T, GORYCA M et al. Designing quantum dots for solotronics[J]. Nature Communications(2014).
[105] WU G, CHENG Y, YANG Z et al. Design of carbon sphere/ magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior[J]. Chemical Engineering Journal(2018).
[106] SHEN L, CHEN R, ZHANG D et al. High-performance perovskite photovoltaics by heterovalent substituted mixed perovskites[J]. Advanced Functional Materials(2022).
[107] SILVI S, BARONCINI M, LA ROSA M et al. Interfacing luminescent quantum dots with functional molecules for optical sensing applications[J]. Topics in Current Chemistry(2016).
[108] XU X, PAN Y, ZHONG Y et al. Ruddlesden-popper perovskites in electrocatalysis[J]. Materials Horizons(2020).
[109] CHI W, BANERJEE S K. Application of perovskite quantum dots as an absorber in perovskite solar cells[J]. Angewandte Chemie International Edition(2022).
[110] FENG J, ZONG Y, SUN Y et al. Optimization of porous FeNi3/ N-GN composites with superior microwave absorption performance[J]. Chemical Engineering Journal(2018).
[111] QI Y, QI L, LIU L et al. Facile synthesis of lightweight carbonized hydrochars decorated with dispersed ZnO nanocrystals and enhanced microwave absorption properties[J]. Carbon(2019).
[112] SU Z, ZHANG W, LU J et al. Oxygen-vacancy-rich Fe3O4/carbon nanosheets enabling high-attenuation and broadband microwave absorption through the integration of interfacial polarization and charge-separation polarization[J]. Journal of Materials Chemistry A(2022).
[113] LIU X, LU X, GUAN H et al. Rational design of ZnO/ZnO nanocrystal-modified rGO foam composites with wide-frequency microwave absorption properties[J]. Ceramics International(2021).
[114] LIU Q, XU X, XIA W et al. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80hierarchical structures studied by electron holography[J]. Nanoscale(2015).
[115] LV S Q, HAN P Z, ZHANG X J et al. Graphene-wrapped pine needle-like cobalt nanocrystals constructed by cobalt nanorods for efficient microwave absorption performance[J]. RSC Advances(2021).
[116] WANG G, CHANG Y, WANG L et al. Synthesis, characterization and microwave absorption properties of Fe3O4/Co core/shell-type nanoparticles[J]. Advanced Powder Technology(2012).
[117] LIU X, MA Y, ZHANG Q et al. Facile synthesis of Fe3O4/C composites for broadband microwave absorption properties[J]. Applied Surface Science(2018).
[118] LIU T, LIU N, ZHAI S et al. Tailor-made core/shell/shell-like Fe3O4@SiO2@PPy composites with prominent microwave absorption performance[J]. Journal of Alloys and Compounds(2019).
[119] WU J, ZHAO Y, ZHAO X et al. Core-shell nanowires comprising silver@polypyrrole-derived pyrolytic carbon for high-efficiency microwave absorption[J]. Journal of Materials Science(2022).
[120] QIAN Y, MENG X, LIU H et al. Magnetic field-induced synthesis of one-dimensional nickel nanowires for enhanced microwave absorption[J]. Advanced Materials Interfaces(2023).
[121] YUAN X, HUANG W, ZHANG X et al. Carbon-coated Mn4N nanowires with abundant internal voids for microwave absorption[J]. ACS Applied Nano Materials(2019).
[122] KUANG J, JIANG P, HOU X et al. Dielectric permittivity and microwave absorption properties of SiC nanowires with different lengths[J]. Solid State Sciences(2019).
[123] DUAN L Q, XU C, DAI X Q et al. Nano-porous carbon wrapped SiC nanowires with tunable dielectric properties for electromagnetic applications[J]. Materials & Design(2020).
[124] CHEN M W, XIE W J, QIU H P. Research progress on continuous carbon fiber reinforced silicon carbide ceramic matrix composite[J]. Advanced Ceramics(2016).
[125] HU H, ZHENG Y, REN K et al. Position selective dielectric polarization enhancement in CNT based heterostructures for highly efficient microwave absorption[J]. Nanoscale(2021).
[126] ZHOU Q, QI C, SHI T et al. 3D printed carbon based all-dielectric honeycomb metastructure for thin and broadband electromagnetic absorption[J]. Composites Part A: Applied Science and Manufacturing(2023).
[127] KUMAR N, VADERA S R[M]. Stealth materials and technology for airborne systems//Aerospace materials and material technologies.
Get Citation
Copy Citation Text
Jie HUANG, Liuying WANG, Bin WANG, Gu LIU, Weichao WANG, Chaoqun GE.
Category:
Received: Dec. 21, 2023
Accepted: --
Published Online: Dec. 12, 2024
The Author Email: Liuying WANG (lywangxa@163.com), Bin WANG (wangbin403403@126.com)