Laser & Optoelectronics Progress, Volume. 60, Issue 9, 0900005(2023)

Research Progress and Typical Applications of Frequency-Locking Technology in Cavity Ring-Down Spectroscopy Detection

Yuyuan Hu1,2,3, Zeqiang Mo2,3, Jilong Tang1, Yuan Zhu1,2,3, Jin Yu2,3,4, and Zhipeng Wei1、*
Author Affiliations
  • 1State Key Laboratory for High Power Semiconductor Laser of Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • 2Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • 3Key Laboratory of Computational Optical Imaging Technology, Chinese Academy of Sciences, Beijing 100094, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(67)

    [1] Gao K L, Duan A M, Chen D L et al. Surface energy budget diagnosis reveals possible mechanism for the different warming rate among Earth’s three poles in recent decades[J]. Science Bulletin, 64, 1140-1143(2019).

    [2] Sastri A R, Christian J R, Achterberg E P et al. Perspectives on in situ sensors for ocean acidification research[J]. Frontiers in Marine Science, 6, 653(2019).

    [3] Wang X H, Wang K D, Yu J et al. Application of cavity ring-down spectroscopy in trace gas detection[J]. Science Technology and Engineering, 17, 120-130(2017).

    [4] Bitter M, Ball S M, Povey I M et al. A broadband cavity ringdown spectrometer for in situ measurements of atmospheric trace gases[J]. Atmospheric Chemistry and Physics, 5, 2547-2560(2005).

    [5] Xu Y Y, Yu J, Mo Z Q et al. Advances in cavity ring-down absorption spectroscopy research and typical applications[J]. Laser & Optoelectronics Progress, 58, 1900001(2021).

    [6] O’Keefe A, Deacon D A G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources[J]. Review of Scientific Instruments, 59, 2544-2551(1988).

    [7] Bjorklund G C, Levenson M D, Lenth W et al. Frequency modulation (FM) spectroscopy[J]. Applied Physics B, 32, 145-152(1983).

    [8] Paldus B A, Harb C C, Spence T G et al. Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers[J]. Optics Letters, 25, 666-668(2000).

    [9] Mazurenka M, Orr-Ewing A J, Peverall R et al. 4 Cavity ring-down and cavity enhanced spectroscopy using diode lasers[J]. Annual Reports Section “C” (Physical Chemistry), 101, 100-142(2005).

    [10] Maithani S, Pradhan M. Cavity ring-down spectroscopy and its applications to environmental, chemical and biomedical systems[J]. Journal of Chemical Sciences, 132, 114-118(2020).

    [11] Maity A, Maithani S, Pradhan M. Cavity ring-down spectroscopy: recent technological advancements, techniques, and applications[J]. Analytical Chemistry, 93, 388-416(2021).

    [12] Wheeler M D, Newman S M, Andrew J O et al. Cavity ring-down spectroscopy[J]. Journal of the American Chemical Society, 94, 337-351(1998).

    [13] Scherer J J, Paul J B, O’Keefe A et al. Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams[J]. Chemical Reviews, 97, 25-52(1997).

    [14] Zheng L J, Li P, Qin R F et al. Research situation and developing tendency for optical measurement technology of gas density[J]. Laser & Optoelectronics Progress, 45, 24-32(2008).

    [15] Wang J D. Study on mode matching technology of CW laser cavity ring-down spectrum[D], 42-44(2020).

    [16] van Leeuwen N J, Diettrich J C, Wilson A C. Periodically locked continuous-wave cavity ringdown spectroscopy[J]. Applied Optics, 42, 3670-3677(2003).

    [17] Fox R W, Oates C W, Hollberg L W[M]. Experimental methods in the physical sciences, 1-5(2003).

    [18] White A D. A two-channel laser frequency control system[J]. IEEE Journal of Quantum Electronics, 1, 322-323(1965).

    [19] Barger R L, Sorem M S, Hall J L. Frequency stabilization of a cw dye laser[J]. Applied Physics Letters, 22, 573-575(1973).

    [20] Hansch T W, Couillaud B. Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity[J]. Optics Communications, 35, 441-444(1980).

    [21] Meijer G, Boogaarts M G H, Jongma R T et al. Coherent cavity ring down spectroscopy[J]. Chemical Physics Letters, 217, 112-116(1994).

    [22] Romanini D S, Gambogi J, Lehmann K K. Cavity ring down spectroscopy with CW diode laser excitation[C], 10-20(1995).

    [23] Romanini D S, Kachanov A A, Sadeghi N F et al. CW cavity ring down spectroscopy[J]. Chemical Physics Letters, 264, 316-322(1997).

    [24] Paldus B A, Harris J S, Martin J et al. Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization[J]. Journal of Applied Physics, 82, 3199-3204(1997).

    [25] Paldus B A, Harb C C, Spence T G et al. Cavity-locked ring-down spectroscopy[J]. Journal of Applied Physics, 83, 3991-3997(1998).

    [26] Debecker I, Mohamed A K, Romanini D. High speed cavity ringdown spectroscopy with increased spectral resolution by synchronous laser and cavity tuning[C], 445(2005).

    [27] He Y, Orr B J. Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases[J]. Applied Physics B, 75, 267-280(2002).

    [28] Boyson T K, Spence T G, Calzada M E et al. Frequency domain analysis for laser-locked cavity ringdown spectroscopy[J]. Optics Express, 19, 8092-8101(2011).

    [29] Morville J, Kassi S, Chenevier M et al. Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking[J]. Applied Physics B, 80, 1027-1038(2005).

    [30] Ohshima S I, Schnatz H. Optimization of injection current and feedback phase of an optically self-locked laser diode[J]. Journal of Applied Physics, 71, 3114-3117(1992).

    [31] Martínez R Z, Metsälä M, Vaittinen O et al. Laser-locked, high-repetition-rate cavity ringdown spectrometer[J]. Journal of the Optical Society of America B, 23, 727-740(2006).

    [32] Berden G, Engeln R[M]. Cavity ring-down spectroscopy: techniques and applications(2009).

    [33] Madej A A, Alcock A J, Czajkowski A et al. Accurate absolute reference frequencies from 1511 to 1545 nm of the v1+v3 band of 12C2H2 determined with laser frequency comb interval measurements[J]. Journal of the Optical Society of America B, 23, 2200-2208(2006).

    [34] Jiang J, Bernard J E, Madej A A et al. Measurement of acetylene-d absorption lines with a self-referenced fiber laser frequency comb[J]. Journal of the Optical Society of America B, 24, 2727-2735(2007).

    [35] Filacchione G, Ammannito E, Coradini A et al. On-ground characterization of Rosetta/VIRTIS-M. II. Spatial and radiometric calibrations[J]. Review of Scientific Instruments, 77, 103106(2006).

    [36] Krasnopolsky V A. Photochemistry of the Martian atmosphere: seasonal, latitudinal, and diurnal variations[J]. Icarus, 185, 153-170(2006).

    [37] Cui L H, Zhao W N, Yan C X. Analysis and alignment of the light path of Gauss beam matched to the fundamental mode of an optical resonator[J]. Acta Physica Sinica, 64, 224211(2015).

    [38] Dai D X, Sun F G, Kang L et al. A cavity ring down spectroscopic setup for high Rep·Rate real time measurment[J]. Chinese Journal of Chemical Physics, 481-486(1997).

    [39] Kang P, Sun Y, Wang J et al. Measurement of molecular absorption spectrum with a laser locked on a high-finesse cavity[J]. Acta Physica Sinica, 67, 104206(2018).

    [40] Tan Z Q, Wang Z G, Long X W. A new theoretical derivation of continuous-wave cavity ring-down technology and its application emulation[J]. Acta Photonica Sinica, 36, 60-63(2007).

    [41] Tan Z Q, Long X W. Design of driving circuits of semiconductor lasers for measurement of continuous-wave cavity ring-down technology[J]. Laser Technology, 32, 27-29, 56(2008).

    [42] Tan Z Q, Long X W, Zhang B. Detector’s response characteristic and its influence on metrical result of continuous-wave cavity ring-down technique[J]. Chinese Journal of Lasers, 36, 959-963(2009).

    [43] Truong G W, Douglass K O, Maxwell S E et al. Frequency-agile, rapid scanning spectroscopy[J]. Nature Photonics, 7, 532-534(2013).

    [44] Jia M Y, Zhao G, Hou J J et al. Research and data processing of double locked cavity ringdown absorption spectroscopy[J]. Acta Physica Sinica, 65, 128701(2016).

    [45] Mo Z Q. Noise analysis and rapid detection of CW cavity ring-down spectrum[D], 20-30(2020).

    [46] Tang J, Li B C, Wang J. High-precision measurements of nitrous oxide and methane in air with cavity ring-down spectroscopy at 7.6 μm[J]. Atmospheric Measurement Techniques, 12, 2851-2861(2019).

    [47] Brown S S, An H, Lee M et al. Cavity enhanced spectroscopy for measurement of nitrogen oxides in the Anthropocene: results from the Seoul tower during MAPS 2015[J]. Faraday Discussions, 200, 529-557(2017).

    [48] Risby T H, Tittel F K. Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis[J]. Optical Engineering, 49, 111123(2010).

    [49] Arslanov D D, Swinkels K, Cristescu S M et al. Real-time, subsecond, multicomponent breath analysis by optical parametric oscillator based off-axis integrated cavity output spectroscopy[J]. Optics Express, 19, 24078-24089(2011).

    [50] Martin W B, Mirov S B, Martyshkin D V et al. Hemoglobin adsorption isotherm at the silica-water interface with evanescent wave cavity ring-down spectroscopy[J]. Journal of Biomedical Optics, 10, 024025(2005).

    [51] Dillon W C, Hampl V, Shultz P J et al. Origins of breath nitric oxide in humans[J]. Chest, 110, 930-938(1996).

    [52] Phillips M. Breath tests in medicine[J]. Scientific American, 267, 74-79(1992).

    [53] Riely C A, Cohen G, Lieberman M. Ethane evolution: a new index of lipid peroxidation[J]. Science, 183, 208-210(1974).

    [54] Kharitonov S A, Barnes P J. Exhaled markers of pulmonary disease[J]. American Journal of Respiratory and Critical Care Medicine, 163, 1693-1722(2001).

    [55] Mürtz M, Frech B, Urban W. High-resolution cavity leak-out absorption spectroscopy in the 10-μm region[J]. Applied Physics B, 68, 243-249(1999).

    [56] von Basum G, Dahnke H, Halmer D et al. Online recording of ethane traces in human breath via infrared laser spectroscopy[J]. Journal of Applied Physiology, 95, 2583-2590(2003).

    [57] Gustafsson L E, Leone A M, Persson M G et al. Endogenous nitric oxide is present in the exhaled air of rabbits, Guinea pigs and humans[J]. Biochemical and Biophysical Research Communications, 181, 852-857(1991).

    [58] Manfred M, Peter H[M]. Cavity ring-down spectroscopy for medical applications, 24-26(2014).

    [59] Crosson E R, Ricci K N, Richman B A et al. Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath[J]. Analytical Chemistry, 74, 2003-2007(2002).

    [60] Ghosh C, Banik G D, Maity A et al. Oxygen-18 isotope of breath CO2 linking to erythrocytes carbonic anhydrase activity: a biomarker for pre-diabetes and type 2 diabetes[J]. Scientific Reports, 5, 8137(2015).

    [61] Kim A, Dueker R S, Dong F et al. Human ADME for YH12852 using wavelength scanning cavity ring-down spectroscopy (WS-CRDS) after a low radioactivity dose[J]. Bioanalysis, 12, 87-98(2020).

    [62] Genoud G, Vainio M, Phillips H et al. Radiocarbon dioxide detection based on cavity ring-down spectroscopy and a quantum cascade laser[J]. Optics Letters, 40, 1342-1345(2015).

    [63] Tomita H, Watanabe K, Takiguchi Y et al. Rapid-swept CW cavity ring-down laser spectroscopy for carbon isotope analysis[J]. Journal of Nuclear Science and Technology, 43, 311-315(2006).

    [64] Galli I, Bartalini S, Ballerini R et al. Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity[J]. Optica, 3, 385-388(2016).

    [65] Galli I, Bartalini S, Borri S et al. Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection[J]. Physical Review Letters, 107, 270802(2011).

    [66] McCartt A D, Ognibene T, Bench G et al. Measurements of carbon-14 with cavity ring-down spectroscopy[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 361, 277-280(2015).

    [67] Kratochwil N A, Dueker S R, Muri D et al. Nanotracing and cavity-ring down spectroscopy: a new ultrasensitive approach in large molecule drug disposition studies[J]. PLoS One, 13, e0205435(2018).

    Tools

    Get Citation

    Copy Citation Text

    Yuyuan Hu, Zeqiang Mo, Jilong Tang, Yuan Zhu, Jin Yu, Zhipeng Wei. Research Progress and Typical Applications of Frequency-Locking Technology in Cavity Ring-Down Spectroscopy Detection[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0900005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Dec. 31, 2021

    Accepted: Mar. 3, 2022

    Published Online: Apr. 24, 2023

    The Author Email: Wei Zhipeng (zpweicust@126.com)

    DOI:10.3788/LOP213417

    Topics