Optics and Precision Engineering, Volume. 30, Issue 24, 3225(2022)
Fusion of infrared and visible images via structure and texture-aware retinex
[1] J MA, Y MA, C LI. Infrared and visible image fusion methods and applications: A survey. Information Fusion, 45, 153-178(2019).
[2] D M BULANON, T F BURKS, V ALCHANATIS. Image fusion of visible and thermal images for fruit detection. Biosystems Engineering, 103, 12-22(2009).
[3] J SAEEDI, K FAEZ. Infrared and visible image fusion using fuzzy logic and population-based optimization. Applied Soft Computing, 12, 1041-1054(2012).
[4] [4] 4林剑萍, 廖一鹏. 结合分数阶显著性检测及量子烟花算法的NSST域图像融合[J]. 光学 精密工程, 2021, 29(6): 1406-1419. doi: 10.37188/OPE.20212906.1406LINJ P, LIAOY P. A novel image fusion method with fractional saliency detection and QFWA in NSST[J]. Opt. Precision Eng., 2021, 29(6): 1406-1419.(in Chinese). doi: 10.37188/OPE.20212906.1406
[5] Z Q ZHU, M Y ZHENG, G Q QI et al. A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain. IEEE Access, 7, 20811-20824(2019).
[6] W GAN, X H WU, W WU et al. Infrared and visible image fusion with the use of multi-scale edge-preserving decomposition and guided image filter. Infrared Physics & Technology, 72, 37-51(2015).
[7] J Y MA, Y ZHOU. Infrared and visible image fusion via gradientlet filter. Computer Vision and Image Understanding, 197, 103016(2020).
[8] [8] 8刘先红, 陈志斌, 秦梦泽. 结合引导滤波和卷积稀疏表示的红外与可见光图像融合[J]. 光学 精密工程, 2018, 26(5): 1242-1253. doi: 10.3788/OPE.20182605.1242LIUX H, CHENZH B, QINM Z. Infrared and visible image fusion using guided filter and convolutional sparse representation[J]. Opt. Precision Eng., 2018, 26(5): 1242-1253.(in Chinese). doi: 10.3788/OPE.20182605.1242
[9] [9] 9陈潮起, 孟祥超, 邵枫, 等. 一种基于多尺度低秩分解的红外与可见光图像融合方法[J]. 光学学报, 2020, 40(11): 72-80. doi: 10.3788/aos202040.1110001CHENCH Q, MENGX CH, SHAOF, et al. Infrared and visible image fusion method based on multiscale low-rank decomposition[J]. Acta Optica Sinica, 2020, 40(11): 72-80.(in Chinese). doi: 10.3788/aos202040.1110001
[10] G F LI, Y J LIN, X D QU. An infrared and visible image fusion method based on multi-scale transformation and norm optimization. Information Fusion, 71, 109-129(2021).
[11] K ZHAN, L W KONG, B LIU et al. Multimodal image seamless fusion. Journal of Electronic Imaging, 28(2019).
[12] H LI, X B QI, W Y XIE. Fast infrared and visible image fusion with structural decomposition. Knowledge-Based Systems, 204, 106182(2020).
[13] Y LIU, X CHEN, Z F WANG et al. Deep learning for pixel-level image fusion: recent advances and future prospects. Information Fusion, 42, 158-173(2018).
[14] [14] 14杨艳春, 高晓宇, 党建武, 等. 基于WEMD和生成对抗网络重建的红外与可见光图像融合[J]. 光学 精密工程, 2022, 30(3): 320-330. doi: 10.37188/OPE.20223003.0320YANGY CH, GAOX Y, DANGJ W, et al. Infrared and visible image fusion based on WEMD and generative adversarial network reconstruction[J]. Opt. Precision Eng., 2022, 30(3): 320-330.(in Chinese). doi: 10.37188/OPE.20223003.0320
[15] Y ZHANG, Y LIU, P SUN et al. IFCNN: a general image fusion framework based on convolutional neural network. Information Fusion, 54, 99-118(2020).
[16] [16] 16刘博, 韩广良, 罗惠元. 基于多尺度细节的孪生卷积神经网络图像融合算法[J]. 液晶与显示, 2021, 36(9): 1283-1293. doi: 10.37188/CJLCD.2020-0339LIUB, HANG L, LUOH Y. Image fusion algorithm based on multi-scale detail Siamese convolutional neural network[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(9): 1283-1293.(in Chinese). doi: 10.37188/CJLCD.2020-0339
[17] E H LAND, J J MCCANN. Lightness and retinex theory. Journal of the Optical Society of America, 61, 1-11(1971).
[18] [18] 18孔玲君, 张孟孟. 基于Retinex的弱可见光和红外图像融合算法[J]. 包装工程, 2020, 41(19): 237-244.KONGL J, ZHANGM M. Fusion algorithm of low visible light and infrared image based on retinex[J]. Packaging Engineering, 2020, 41(19): 237-244.(in Chinese)
[19] D J JOBSON, Z RAHMAN, G A WOODELL. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 6, 965-976(1997).
[20] S PARK, B MOON et al. Low-light image enhancement using variational optimization-based Retinex model. 2017 IEEE International Conference on Consumer Electronics (ICCE), 70-71(2017).
[21] J XU, Y HOU, D REN et al. STAR: a structure and texture aware retinex model. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 29, 5022-5037(2020).
[22] B L CAI, X M XU, K L GUO et al. A joint intrinsic-extrinsic prior model for retinex, 4020-4029(2017).
[23] K ZHAN, J TENG, Q LI et al. A Novel Explicit Multi-focus Image Fusion Method. Journal of Information Hiding and Multimedia Signal Processing, 6, 600-612(2015).
[24] K ZHAN, Y G XIE, H B WANG et al. Fast filtering image fusion. Journal of Electronic Imaging, 26(2017).
[25] R GONZÁLEZ, R WOODS. Digital Image Processing, 3rd edition(2008).
[26] G H QU, D L ZHANG, P F YAN. Information measure for performance of image fusion. Electronics Letters, 38, 313(2002).
[27] Q WANG, Y SHEN, J Q ZHANG. A nonlinear correlation measure for multivariable data set. Physica D: Nonlinear Phenomena, 200, 287-295(2005).
[28] J ZHAO, R LAGANIERE, Z LIU. Performance assessment of combinative pixel-level image fusion based on an absolute feature measurement. International Journal of Innovative Computing, Information and Control, 3, 1433-1447(2007).
Get Citation
Copy Citation Text
Jianping HU, Mengyun HAO, Ying DU, Qi XIE. Fusion of infrared and visible images via structure and texture-aware retinex[J]. Optics and Precision Engineering, 2022, 30(24): 3225
Category: Information Sciences
Received: May. 28, 2022
Accepted: --
Published Online: Feb. 15, 2023
The Author Email: XIE Qi (xieqi_19820302@126.com)