Journal of the Chinese Ceramic Society, Volume. 51, Issue 4, 1015(2023)
In-situ Exsolution of Cerium Oxide-Metal-Perovskite Composite Cathode for Solid Oxide Electrolysis Cell
[1] [1] HAUCH A, KNGAS R, BLENNOW P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370(6513): eaba6118.
[2] [2] ZHENG Y, WANG J C, YU B, et al. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): Advanced materials and technology[J]. Chem Soc Rev, 2017, 46(5): 1427-1463.
[3] [3] SONG Y F, ZHANG X M, XIE K, et al. High-temperature CO2 electrolysis in solid oxide electrolysis cells: Developments, challenges, and prospects[J]. Adv Mater, 2019, 31: 1902033.
[4] [4] ZHANG X M, SONG Y F, WANG G X, et al. Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells: Recent advance in cathodes[J]. J Energy Chem, 2017, 26(5): 839-853.
[5] [5] REN B H, CROISET E, RICARDEZ-SANDOVAL L. A theoretical study on CO2 electrolysis through synergistic manipulation of Ni/Mn doping and oxygen vacancies in La(Sr)FeO3[J]. J Catal, 2020, 383: 273-282.
[6] [6] SKAFTE T L, BLENNOWA P, HJELMB J, et al. Carbon deposition and sulfur poisoning during CO2 electrolysis in nickelbased solid oxide cell electrodes[J]. J Power Sources, 2018, 373: 54-60.
[7] [7] SUN C W, ALONSO J A, BIAN J J. Recent advances in perovskite- type oxides for energy conversion and storage applications[J]. Adv Energy Mater, 2020, 11: 2000459.
[8] [8] DWIVEDI S. Solid oxide fuel cell: Materials for anode, cathode and electrolyte[J]. Int J Hydrog Energy, 2020, 45(44): 23988-24013.
[9] [9] ZHU T L, TROIANI H E, MOGNI L V, et al. Ni-substituted Sr(Ti,Fe)O3 SOFC anodes: Achieving high performance via metal alloy nanoparticle exsolution[J]. Joule, 2018, 2: 478-496.
[10] [10] WANG L, STOERZINGER K A, CHANG L, et al. Tuning bifunctional oxygen electrocatalysts by changing the A-site rare-earth element in perovskite nickelates[J]. Adv Funct Mater, 2018, 28: 1803712.
[11] [11] IRVINE J T S, NEAGU D, VERBRAEKEN M C, et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers[J]. Nat Energy, 2016, 1: 15014.
[12] [12] KIM J H, KIM J K, LIU J P, et al. Nanoparticle ex-solution for supported catalysts: Materials design, mechanism and future perspectives[J]. ACS Nano, 2021, 15: 81-110.
[13] [13] NEAGU D, OH T S, MILLER, D N, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution[J]. Nat Commun, 2015, 6: 8120.
[14] [14] NEAGU D, TSEKOURAS G, MILLER D N, et al. In situ growth of nanoparticles through control of non-stoichiometry[J]. Nat Chem, 2013, 5(11): 916-923.
[15] [15] KYRIAKOUA V, NEAGUB D, PAPAIOANNOUB E I, et al. Co-electrolysis of H2O and CO2 on exsolved Ni nanoparticles for efficient syngas generation at controllable H2/CO ratios[J]. Appl Catal B-Environ, 2019, 258: 117950.
[16] [16] BAI L, LI H B, YAN Z, et al. New insight into the doped strontium titanate cathode with in situ exsolved nickel nanoparticles for electrolysis of carbon dioxide[J]. Adv Mater Interfaces, 2020, 8: 2001598.
[17] [17] LV H F, LIN L, ZHANG X M, et al. In situ exsolved FeNi3 nanoparticles on nickel doped Sr2Fe1.5Mo0.5O6-δ perovskite for efficient electrochemical CO2 reduction reaction[J]. J Mater Chem A, 2019, 7: 11967-11975.
[18] [18] LV H F, LIN L, ZHANG X M, et al. In situ investigation of reversible exsolution/dissolution of CoFe alloy nanoparticles in a Co-doped Sr2Fe1.5Mo0.5O6-δ cathode for CO2 electrolysis[J]. Adv Mater, 2020, 32: 1906193.
[19] [19] WANG L X, WANG L, M, X J, et al. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts[J]. Adv Mater, 2019, 31: 1901905.
[20] [20] PAPAIOANNOU E I, NEAGU D, RAMLI W K W, et al. Sulfur-tolerant, exsolved Fe-Ni alloy nanoparticles for CO oxidation[J]. Top Catal, 2018, 62(17-20): 1149-1156.
[21] [21] LI B X, HE S, LI J B, et al. A Ce/Ru codoped SrFeO3-δ perovskite for a coke-resistant anode of a symmetrical solid oxide fuel cell[J]. ACS Catal, 2020, 10(24): 14398-14409.
[22] [22] ZHANG L X, HU S Q, LI W P, et al. Nano-CeO2-modified cathodes for direct electrochemical CO2 reduction in solid oxide electrolysis cells[J]. ACS Sustain Chem Eng, 2019, 7(10): 9629-9636.
[23] [23] HE S, LI M, HUI J N, et al. In-situ construction of ceria-metal/titanate heterostructure with controllable architectures for efficient fuel electrochemical conversion[J]. Appl Catal B-Environ, 2021, 298: 120588.
[24] [24] WAN T H, SACCOCCIO M, CHEN C, et al. Influence of the discretization methods on the distribution of relaxation times deconvolution: Implementing radial basis functions with DRTtools[J]. Electrochim Acta, 2015, 184: 483-499.
[25] [25] LI Z S, PENG M L, ZHU Y L, et al. The facilitated cathodic elementary reactions of solid oxide electrolysis cells for CO2 conversion over a Ce decorated La0.43Ca0.37Ti0.94Ni0.06O3-δ electrocatalyst[J]. J Mater Chem A, 2022, 10(38): 20350-20364.
[26] [26] LI Z S, PENG M L, ZHAO Y R, et al. Minimized thermal expansion mismatch of cobalt-based perovskite air electrode for solid oxide cells[J]. Nanoscale, 2021, 13(47): 20299-20308.
[27] [27] SKAFTE T L, GUAN Z X, MACHALA M L, et al. Selective high-temperature CO2 electrolysis enabled by oxidized carbon intermediates[J]. Nat Energy, 2019, 4(10): 846-855.
Get Citation
Copy Citation Text
PENG Meilan, LI Zhishan, ZHANG Xiaoxin, ZHANG Yifan, NING Jiarui, SUN Yifei. In-situ Exsolution of Cerium Oxide-Metal-Perovskite Composite Cathode for Solid Oxide Electrolysis Cell[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 1015
Category:
Received: Oct. 23, 2022
Accepted: --
Published Online: Apr. 15, 2023
The Author Email: Meilan PENG (mlpeng123@163.com)
CSTR:32186.14.