Infrared and Laser Engineering, Volume. 51, Issue 5, 20220214(2022)
Fabrication of silicon nitride-based integrated microcavity optical frequency comb devices (Invited)
[1] T W Hänsch. Nobel lecture: Passion for precision. Rev Mod Phys, 78, 1297-1309(2006).
[2] T Fortier, E Baumann. 20 years of developments in optical frequency comb technology and applications. Communicat Phys, 2, 1-16(2019).
[3] T J Kippenberg, A L Gaeta, M Lipson, et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).
[4] S B Papp, K Beha, P Del’Haye, et al. Microresonator frequency comb optical clock. Optica, 1, 10-14(2014).
[5] M J Thorpe, K D Moll, R J Jones, et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science, 311, 1595-1599(2006).
[6] P Trocha, M Karpov, D Ganin, et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).
[7] T Udem, R Holzwarth, T W Hänsch. Optical frequency metrology. Nature, 416, 233-237(2002).
[8] D Pascal, A Schliesser, O Arcizet, et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).
[9] S Giacomo, J Faist, N Picqué. On-chip mid-infrared and THz frequency combs for spectroscopy. Appl Phys Lett, 114, 150401(2019).
[10] T J Kippenberg, R Holzwarth, S A Diddams. Microresonator- based optical frequency combs. Science, 332, 555-559(2011).
[11] J Liu, E Lucas, A S Raja, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nature Photon, 14, 486-491(2020).
[12] T J Kippenberg, A L Gaeta, M Lipson, et al. Dissipative Kerr solitons in optical microresonators. Science, 361, 129-162(2018).
[13] J Hu, J He, J Liu, et al. Reconfigurable radiofrequency filters based on versatile soliton microcombs. Nature Communication, 11, 4377(2020).
[14] J Riemensberger, A Lukashchuk, M Karpov, et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020).
[15] Y K Chembo. Kerr optical frequency combs: Theory, applications and perspectives. Nanophoton, 5, 214-230(2016).
[16] Y Z Zheng, C Z Sun, B Xiong, et al. Integrated gallium nitride nonlinear photonics. Laser & Photon Rev, 16, 2100071(2021).
[17] X X Xue, X P Zheng, B K Zhou. Super-efficient temporal solitons in mutually coupled optical cavities. Nature Photon, 13, 616-622(2019).
[18] Z Z Lu, H J Chen, W Q Wang, et al. Synthesized soliton crystals. Nature Communication, 12, 3179(2021).
[19] X Y Zhang, Q T Cao, W Zhuo, et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface.. Nature Photon, 13, 21-24(2019).
[20] Y Hu, S L Ding, Y C Qin, et al. Generation of optical frequency comb via giant optomechanical oscillation. Phys Rev Lett, 127, 134301(2021).
Get Citation
Copy Citation Text
Zhendong Zhu, Pingwei Lin, Zhaoyang Sun, Benfeng Bai, Xueshen Wang. Fabrication of silicon nitride-based integrated microcavity optical frequency comb devices (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220214
Category: Special issue—Microcavity optical frequency comb technology
Received: Mar. 15, 2022
Accepted: --
Published Online: Jun. 14, 2022
The Author Email: