Optics and Precision Engineering, Volume. 24, Issue 9, 2217(2016)
Compensating controller for hysteresis nonlinerity of piezoelectric ceramics
[1] [1] LI W, CHEN X D. Compensation of hysteresis in piezoelectric actuators without dynamics modeling [J]. Sensors and Actuators A: Physical, 2013, 199: 89-97.
[2] [2] YANG G, WANG D H, LI SH D. Single piezoelectric ceramic stack actuator based fast steering mirror with fixed rotation axis and large excursion angle [J].Sensors and Actuators A: Physical, 2015, 235: 292-299.
[3] [3] ZHU W, BIAN L X, AN Y, et al.. Modeling and control of a two-axis fast steering mirror with piezoelectric stack actuators for laser beam tracking [J]. Smart Structure and Materials, 2015, 24: 075014.
[4] [4] QI K Q, YANG X, CHAO F, et al.. Analysis of the displacement amplification ratio of bridge-type mechanism [J].Mechanism and Machine Theory, 2015, 87: 45-56.
[6] [6] RU CH H, CHEN L G, SHAO B, et al.. A hysteresis compensation method of piezoelectric actuator: Model, identification and control [J]. Control Engineering Practice, 2009, 17: 1107-1114.
[7] [7] ZIRKA S E, MOROZ Y I, MARKETOS P, et al..Dynamic hysteresis modeling [J]. Science Direct: Physica B, 2004, 343: 90-95.
[8] [8] GAUL L, BECKER J. Model-based piezoelectric hysteresis and creep compensation for highly-dynamic feedforward rest-to-rest motion control of piezoelectrically actuated flexible structures [J]. International Journal of Engineering Science, 2009, 47: 1193-1207.
[9] [9] XIAO SH L, LI Y M. Dynamic compensation and H∞ control for piezoelectric actuators based on the inverse Bouc-Wen model [J]. Robotics and Computer-Integrated Manufacturing, 2014, 30: 47-54.
[11] [11] BAHADUR I M, MILLS J K. A new model of hysteresis of piezoelectric actuators [C]. Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation. August 7-10, Beijing, China.
[12] [12] MACHI J W, NISTRI P, ZECCA P. Mathematical models for hysteresis [J]. SIAW Review. 35(1993)94-123.
[13] [13] MARTIN B. Some mathematical properties of the preisach model for hysteresis [J]. Transcations on Magnetics. 25(4)1989.
[14] [14] LIU S N, SU CH Y. A modified generalized Prandtl-Ishlinskii model and its inverse for hysteresis compensation [C]. 2013 American Control Conference, Washington, 2013: 17-19.
[15] [15] WU Y L, LIU T X, ZHANG ZH D, et al.. Research on compound control arithmetic ofpiezoelectric ceramic based on PI model [J]. Piezoelectrics & Acoustooptics, 2015, 37(6): 950-953.(in Chinese)
[16] [16] JANAIDEH M A, RAKHEJA S, SU CH Y. Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator [J]. Mechatronics, 2009, 10: 656-670.
[17] [17] BASU M. Modified particle swarm optimization for nonconvex economic dispatch problems [J]. Electrical Power and Energy Systems, 2015, 69: 304-312.
[18] [18] MU A, CAO D, WANG X H. A modified particle swarm optimization algorithm [J]. Natural Science, 2009, 2(1): 151-155.
[19] [19] YANG M J, GU G Y, ZHU L M. Parameter identification of the generalized Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization [J]. Sensors and Actuators A: Physics, 2013, 189: 254-265.
Get Citation
Copy Citation Text
FANG Chu, GUO Jin, XU Xin-xing, JIANG Zhen-hua, WANG Ting-feng. Compensating controller for hysteresis nonlinerity of piezoelectric ceramics[J]. Optics and Precision Engineering, 2016, 24(9): 2217
Category:
Received: Dec. 7, 2015
Accepted: --
Published Online: Nov. 14, 2016
The Author Email: