Journal of Synthetic Crystals, Volume. 49, Issue 10, 1863(2020)

Preparation and Property of Porous Carbonized Cotton Composite SnO2 Anode Material for Lithium-Ion Battery

GONG Keyu*... ZHANG Tao, YAN Lei, GAO Feng and MIAO Yang |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(24)

    [1] [1] Jiang J H, Liu S, Wang Y, et al. Auto-adjustment of structure and SnO2 content of SnO2/TiO2 microspheres for lithium-ion batteries[J]. Chemical Engineering Journal, 2019: 746-754.

    [2] [2] Jin S, Jiang Y, Ji H X, et al. Advanced 3D current collectors for lithium-based batteries[J]. Advanced Materials, 2018, 30(48): 1802014.1-1802014.13.

    [3] [3] Jin Y, Zhu B, Lu Z, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery[J]. Advanced Energy Materials, 2017, 7(23): 1700715.1-1700715.17.

    [4] [4] Liu N, Wu H, Mcdowell M T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Letters, 2012, 12(6): 3315-3321.

    [6] [6] Dash R, Pannala S. Theoretical limits of energy density in silicon-carbon composite anode based lithium-ion Batteries[J]. Scientific Reports, 2016, 6: 27449.

    [7] [7] Lin Q, Li Y, Yang M. Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature[J]. Sensors and Actuators B Chemical, 2012, 173(10): 139-147.

    [8] [8] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.

    [9] [9] Kroto H W, Heath J R, Obrien S C, et al. C60: buckminsterfullerene[J]. Nature, 1985, 318(6042): 162-163.

    [10] [10] Tucek J, Blonski P, Ugolotti J, et al. Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications[J]. Chemical Society Reviews, 2018, 47(11): 3899-3990.

    [11] [11] Bi Z, Kong Q Q, Cao Y, et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review[J]. Journal of Materials Chemistry A, 2019, 7(27): 16028-16045.

    [12] [12] Kim C, Jung J, Yoon K R, et al. A high-capacity and long-cycle-life lithium-ion battery anode architecture:silver nanoparticle-decorated SnO2/NiO nanotubes[J]. ACS Nano, 2016, 10(12): 11317-11326.

    [13] [13] Idota Y, Kubota T, Matsufuji A, et al. Tin-based amorphous oxide:a high-capacity lithium-ion-storage material[J].Science,1997,276(5317):1395-1397.

    [14] [14] Guo H, Mao R, Yang X, et al. Hollow nanotubular SnO2 with improved lithium storage[J]. Journal of Power Sources, 2012, 219: 280-284.

    [15] [15] Lin Q, Li Y, Yang M, et al. Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature[J]. Sensors and Actuators B-chemical, 2012, 173(173): 139-147.

    [16] [16] He Y, Li A, Dong C, et al. Mesoporous Tin-based oxide nanospheres and graphene composites as advanced anodes for lithium-ion half/full and sodium-ion batteries[J]. Chemistry-A European Journal, 2017, 23(55): 13724-13733.

    [17] [17] Yuan J, Chen C, Hao Y, et al. SnO2/polypyrrole hollow spheres with improved cycle stability as lithium-ion battery anodes[J]. Journal of Alloys and Compounds, 2017: 34-39.

    [18] [18] Yao J, Shen X, Wang B, et al. In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries[J]. Electrochemistry Communications, 2009, 11(10): 1849-1852.

    [20] [20] Ma C, Zhang W, He Y, et al. Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries[J]. Nanoscale, 2016, 8(7): 4121-4126.

    [21] [21] Yao X, Ke Y, Ren W, et al. Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage[J]. Advanced Energy Materials, 2019, 9(6): 1803260.2-1803260.5.

    [22] [22] Lee H R, Kim H J, Park J H, et al. One-pot synthesis of carbon-coated SnO2 nano-composite using hydrothermal method for lithium ion battery application[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(6): 4141-4145.

    [23] [23] Wang L, Tong J F, Li B W, et al. Crystal structures of pan-based carbon fibers during graphitization[J]. Materials Engineering, 2009, 2: 363-367.

    [24] [24] Wang H, Wang J, Cao D, et al. Honeycomb-like carbon nanoflakes as a host for SnO2 nanoparticles allowing enhanced lithium storage performance[J]. Journal of Materials Chemistry A, 2017, 5(15): 6817-6824.

    [25] [25] Zhao K, Zhang L, Xia R, et al. SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries[J]. Small, 2016, 12(5): 588-594.

    [26] [26] Zhang F, Yang C, Gao X, et al. SnO2@PANI core-shell nanorod arrays on 3D graphite foam: a high-performance integrated electrode for lithium-ion batteries[J]. ACS Applied Materials&Interfaces, 2017, 9(11): 9629.18-9629.21.

    Tools

    Get Citation

    Copy Citation Text

    GONG Keyu, ZHANG Tao, YAN Lei, GAO Feng, MIAO Yang. Preparation and Property of Porous Carbonized Cotton Composite SnO2 Anode Material for Lithium-Ion Battery[J]. Journal of Synthetic Crystals, 2020, 49(10): 1863

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Jan. 9, 2021

    The Author Email: Keyu GONG (892394376@qq.com)

    DOI:

    CSTR:32186.14.

    Topics