Matter and Radiation at Extremes, Volume. 6, Issue 2, 020301(2021)
Extreme matter compression caused by radiation cooling effect in gigabar shock wave driven by laser-accelerated fast electrons
[1] J.-L. Feugeas, S. Gus’kov, P. Nicolaï, X. Ribeyre, V. Tikhonchuk, M. Touati. Ablation pressure driven by an energetic electron beam in a dense plasma. Phys. Rev. Lett., 109, 255004(2012).
[2] J.-L. Feugeas, S. Gus’kov, P. Nicolaï, X. Ribeyre, V. T. Tikhonchuk. Dense plasma heating and Gbar shock formation by a high intensity flux of energetic electrons. Phys. Plasmas, 20, 062705(2013).
[3] S. Y. Gus’kov. On the possibility of laboratory shock wave studies of the equation of state of a material at gigabar pressures with beams of laser-accelerated particles. JETP Lett., 100, 71-74(2014).
[4] R. Cauble, N. C. Holmes, T. J. Hoover, J. D. Kilkenny, R. W. Lee, D. W. Phillion. Demonstration of 0.75 Gbar planar shocks in x-ray driven colliding foils. Phys. Rev. Lett., 70, 2102-2105(1993).
[5] Y. Aglitskiy, Y. Arikawa, H. Azechi, J. W. Bates, M. Karasik, M. Murakami, S. P. Obenschain, J. Oh, T. Sakaiya, A. J. Schmitt, A. L. Velikovich, T. Watari, J. L. Weaver, S. T. Zalesak. Acceleration to high velocities and heating by impact using Nike KrF laser. Phys. Plasmas, 17, 056317(2010).
[6] S. Y. Gus’kov, P. A. Kuchugov, N. P. Zaretskii. Features and limiting characteristics of the heating of a substance by a laser-accelerated fast electron beam. JETP Lett., 111, 135-138(2020).
[7] R. S. Pease. Equilibrium characteristics of a pinched gas discharge cooled by bremsstrahlung radiation. Proc. Phys. Soc., Sect. B, 70, 11-23(1957).
[8] V. V. Vikhrev. Contraction of Z-pinch as a result of losses to radiation. JETP Lett, 27, 95-98(1978).
[9] L. Bernal, H. Bruzzone. Radiative collapses in z-pinches with axial mass losses. Plasma Phys. Controlled Fusion, 44, 95-98(2002).
[10] K. S. Anderson, R. Betti, T. R. Boehly, T. J. B. Collins, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, S. X. Hu, J. P. Knauer, W. L. Kruer, J. A. Marozas, A. V. Maximov, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, D. T. Michel, J. F. Myatt, P. B. Radha, S. P. Regan, T. C. Sangster, A. J. Schmitt, W. Seka, J. D. Sethian, R. W. Short, S. Skupsky, A. A. Solodov, J. M. Soures, C. Stoeckl, K. Tanaka, W. Theobald, J. D. Zuegel. Direct-drive inertial confinement fusion: A review. Phys. Plasmas, 22, 110501(2015).
[11] J. E. Bailey, I. E. Golovkin, J. J. MacFarlane, R. C. Mancini, T. A. Mehlhorn, K. Peterson, G. Rochau, P. R. Woodruff. Spectroscopic analysis and NLTE radiative cooling effects in ICF capsule implosions with mid- dopants. J. Quant. Spectrosc. Radiat. Transfer, 99, 199-208(2006).
[12] J. M. Blondin, D. F. Cioffi. The growth of density perturbations in radiative shocks. Astrophys. J., 345, 853(1989).
[13] J. Laming. Relationship between oscillatory thermal instability and dynamical thin-shell overstability of radiative shocks. Phys. Rev. E, 70, 057402(2004).
[14] F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, M. Tatarakis. A study of picosecond laser–solid interactions up to 1019 w cm−2. Phys. Plasmas, 4, 447-457(1997).
[15] F. N. Beg, M. G. Haines, R. B. Stephens, M. S. Wei. Hot-electron temperature and laser-light absorption in fast ignition. Phys. Rev. Lett., 102, 045008(2009).
[16] S. Atzeni, J. R. Davies, A. Schiavi. Stopping and scattering of relativistic electron beams in dense plasmas and requirements for fast ignition. Plasma Phys. Controlled Fusion, 51, 015016(2008).
[17] J. J. Honrubia, J. Meyer-ter-Vehn. Three-dimensional fast electron transport for ignition-scale inertial fusion capsules. Nucl. Fusion, 46, L25-L28(2006).
[18] Y. V. Afanasiev, S. Y. Gus’kov. Energy transfer to the plasma in laser targets. Nuclear Fusion by Inertial Confinement: A Comprehensive Treatise, 99-119(1993).
[19] J. Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933-4024(1995).
[20] W. D. Hayes, Y. P. Raizer, Y. B. Zel’dovich, R. F. Probstein. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena(1967).
[21] A. P. Fadeev, V. Y. Karpov, I. I. Shelaputin, G. V. Shpatakovskaya, N. V. Zmitrenko. Description of the physical processes in the DIANA program for calculations of problems of laser fusion, 2, 34-37(1983).
[22] S. Y. Gus’kov, P. A. Kuchugov, R. A. Yakhin, N. V. Zmitrenko. Effect of ‘wandering’ and other features of energy transfer by fast electrons in a direct-drive inertial confinement fusion target. Plasma Phys. Controlled Fusion, 61, 055003(2019).
[23] S. Y. Gus’kov, P. A. Kuchugov, R. A. Yakhin, N. V. Zmitrenko. Effect of fast electrons on the gain of a direct-drive laser fusion target. Plasma Phys. Controlled Fusion, 61, 105014(2019).
[24] V. B. Rozanov, G. A. Vergunova. Influence of intrinsic X-ray emission on the processes in low-density laser targets. Laser Part. Beams, 17, 579-583(1999).
[25] V. B. Rozanov, G. A. Vergunova. Investigation of compression of indirect-drive targets under conditions of the NIF facility using one-dimensional modelling. Quantum Electron., 50, 162-168(2020).
Get Citation
Copy Citation Text
S. Yu. Gus’kov, P. A. Kuchugov, G. A. Vergunova. Extreme matter compression caused by radiation cooling effect in gigabar shock wave driven by laser-accelerated fast electrons[J]. Matter and Radiation at Extremes, 2021, 6(2): 020301
Category: Radiation and Hydrodynamics
Received: Aug. 20, 2020
Accepted: Dec. 19, 2020
Published Online: Apr. 22, 2021
The Author Email: Kuchugov P. A. (pkuchugov@gmail.com)