Semiconductor Optoelectronics, Volume. 43, Issue 2, 254(2022)
Research Progresses of Refractive Index Sensing Based on Subwavelength Grating Structures
[1] [1] Reed G T, Mashanovich G Z, Gardes F, et al. Silicon optical modulators[J]. Nature Photonics, 2010, 4(8): 518-526.
[2] [2] Jiang W, Xu L, Liu Y, et al. Optical all-pass filter in silicon-on-insulator[J]. ACS Photonics, 2020, 7(9): 2539-2546.
[3] [3] Ali W E, Wolfram P, Kartik S, et al. Hybrid integrated quantum photonic circuits[J]. Nature Photonics, 2020, 14: 285-298.
[4] [4] Soler M, Calvo-Lozano O, Estevez M C, et al. Nanophotonic biosensors: driving personalized medicine[J]. Optics and Photonics News, 2020, 31(4): 24-31.
[5] [5] Wang S, Ramachandran A, Ja S J. Integrated microring resonator biosensors for monitoring cell growth and detection of toxic chemicals in water[J]. Biosensors and Bioelectronics, 2009, 24(10): 3061-3066.
[6] [6] Badri S H. Transmission resonances in silicon subwavelength grating slot waveguide with functional host material for sensing applications[J]. Optics & Laser Technology, 2021, 136: 106776.
[7] [7] Claes T, Molera J G, Vos K D, et al. Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator[J]. IEEE Photonics J., 2009, 1(3): 197-204.
[8] [8] Radjenovic B, Radmilovic-Radjenovic M. Excitation of confined modes in silicon slotted waveguides and microring resonators for sensing purposes[J]. IEEE Sensors J., 2014, 14(5): 1412-1417.
[9] [9] Kargar A, Chao C Y. Design and optimization of waveguide sensitivity in slot microring sensors[J]. J. of the Optical Society of America A, 2011, 28(4): 596-603.
[10] [10] Lo S M, Hu S, Gaur G, et al. Photonic crystal microring resonator for label-free biosensing[J]. Opt. Express, 2017, 25(6): 7046-7054.
[11] [11] Urbonas D, Balcytis A, Vaskevicius K, et al. Air and dielectric bands photonic crystal microring resonator for refractive index sensing[J]. Opt. Lett., 2016, 41(15): 3655-3658.
[12] [12] Xu Y, Hu S, Kong M. Air-mode photonic crystal micro-ring resonator with enhanced quality factor for refractive index sensing[J]. IEEE Photonics J., 2020, 12(3): 1-11.
[13] [13] Flueckiger J, Schmidt S, Donzella V, et al. Sub-wavelength grating for enhanced ring resonator biosensor[J]. Opt. Express, 2016, 24(14): 15672-15686.
[14] [14] Wang Z, Xu X, Fan D, et al. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits[J]. Scientific Reports, 2016, 6(1): 1-7.
[15] [15] Wang Z, Xu X, Fan D, et al. High quality factor subwavelength grating waveguide micro-ring resonator based on trapezoidal silicon pillars[J]. Opt. Lett., 2016, 41(14): 3375-3378.
[16] [16] Yan H, Huang L, Xu X, et al. Breaking the limitation of evanescent wave sensing with subwavelength grating waveguides[C]// CLEO: Science and Innovations. Optical Society of America, 2017: JTh3M. 3.
[17] [17] Robert H, Przemek J B, Pavel C, et al. Waveguide sub-wavelength structures: A review of principles and applications[J]. Laser & Photonics Rev., 2015, 9(1): 25-49.
[18] [18] Wangüemert-Pérez J G, Hadij-ElHouati A, Snchez-Postigo A, et al. Subwavelength structures for silicon photonics biosensing[J]. Optics & Laser Technol., 2019, 109: 437-448.
[19] [19] Odeh M, Twayana K, Sloyan K, et al. Mode sensitivity analysis of subwavelength grating slot waveguides[J]. IEEE Photonics J., 2019, 11(5): 1-10.
[20] [20] Luan E, Yun H, Laplatine L, et al. Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors[J]. IEEE J. of Sel. Top. in Quantum Electronics, 2018, 25(3): 1-11.
[21] [21] Chang C W, Xu X, Chakravarty S, et al. Pedestal subwavelength grating metamaterial waveguide ring resonator for ultra-sensitive label-free biosensing[J]. Biosensors and Bioelectronics, 2019, 141: 111396.
[22] [22] Luan E, Awan K M, Cheung K C, et al. High-performance sub-wavelength grating-based resonator sensors with substrate overetch[J]. Opt. Lett., 2019, 44(24): 5981-5984.
[23] [23] Yao K, Shi Y. High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing[J]. Opt. Express, 2012, 20(24): 27039-27044.
[24] [24] Xu P, Yao K, Zheng J, et al. Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing[J]. Opt. Express, 2013, 21(22): 26908-26913.
[25] [25] Xu P, Zheng J, Zhou J, et al. Multi-slot photonic crystal cavities for high-sensitivity refractive index sensing[J]. Opt. Express, 2019, 27(3): 3609-3616.
[26] [26] Schmidt S, Flueckiger J, Wu W X, et al. Improving the performance of silicon photonic rings, disks, and Bragg gratings for use in label-free biosensing[C]// Biosensing and Nanomedicine Ⅶ. Inter. Society for Optics and Photonics, 2014, 9166: 91660M.
[27] [27] Donzella V, Sherwali A, Flueckiger J, et al. Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides[J]. Opt. Express, 2015, 23(4): 4791-4803.
[28] [28] Flueckiger J, Schmidt S, Donzella V, et al. Sub-wavelength grating for enhanced ring resonator biosensor[J]. Opt. Express, 2016, 24(14): 15672-15686.
[29] [29] Yan H, Huang L, Xu X, et al. Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides[J]. Opt. Express, 2016, 24(26): 29724-29733.
[30] [30] Tu Z, Gao D, Zhang M, et al. High-sensitivity complex refractive index sensing based on Fano resonance in the subwavelength grating waveguide micro-ring resonator[J]. Opt. Express, 2017, 25(17): 20911-20922.
[31] [31] Huang L, Yan H, Xu X, et al. Improving the detection limit for on-chip photonic sensors based on subwavelength grating racetrack resonators[J]. Opt. Express, 2017, 25(9): 10527-10535.
[32] [32] Huang L, Yan H, Xiang L, et al. Subwavelength racetrack resonators with enhanced critically coupled tolerance for on-chip sensing[J]. IEEE Access, 2021, 9: 23424-23431.
[33] [33] Ruan Z, Zhou N, Zheng S, et al. Releasing the light field in subwavelength grating slot microring resonators for athermal and sensing applications[J]. Nanoscale, 2020, 12(29): 15620-15630.
[34] [34] Kazanskiy N L, Khonina S N, Butt M A. Subwavelength grating double slot waveguide racetrack ring resonator for refractive index sensing application[J]. Sensors, 2020, 20(12): 3416.
[35] [35] Luan E, Yun H, Laplatine L, et al. Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors[J]. IEEE J. of Sel. Top. in Quantum Electronics, 2018, 25(3): 1-11.
[36] [36] Luan E, Awan K M, Cheung K C, et al. High-performance sub-wavelength grating-based resonator sensors with substrate overetch[J]. Opt. Lett., 2019, 44(24): 5981-5984.
[37] [37] Chang C W, Xu X, Chakravarty S, et al. Pedestal subwavelength grating metamaterial waveguide ring resonator for ultra-sensitive label-free biosensing[J]. Biosensors and Bioelectronics, 2019, 141: 111396.
[38] [38] Wen Y, Sun Y, Deng C, et al. High sensitivity and FOM refractive index sensing based on Fano resonance in all-grating racetrack resonators[J]. Opt. Communications, 2019, 446: 141-146.
[39] [39] Sun Y, Hu G, Cui Y. Subwavelength grating waveguide racetrack-based refractive index sensor with improved figure of merit[J]. Appl. Opt., 2020, 59(33): 10613-10617.
[40] [40] Luan E, Yun H, Ma M, et al. Label-free biosensing with a multi-box sub-wavelength phase-shifted Bragg grating waveguide[J]. Biomedical Opt. Express, 2019, 10(9): 4825-4838.
[41] [41] Pérez-Armenta C, Ortega-Moux A, Ctyrok J, et al. Narrowband Bragg filters based on subwavelength grating waveguides for silicon photonic sensing[J]. Opt. Express, 2020, 28(25): 37971-37985.
[42] [42] Torrijos-Morán L, Griol A, García-Rupérez J. Experimental study of subwavelength grating bimodal waveguides as ultrasensitive interferometric sensors[J]. Opt. Lett., 2019, 44(19): 4702-4705.
[43] [43] Torrijos-Morán L, García-Rupérez J. Single-channel bimodal interferometric sensor using subwavelength structures[J]. Opt. Express, 2019, 27(6): 8168-8179.
[44] [44] Bickford J R, Cho P S, Farrell M E, et al. The investigation of subwavelength grating waveguides for photonic integrated circuit based sensor applications[J]. IEEE J. of Sel. Top. in Quantum Electronics, 2019, 25(3): 1-10.
[45] [45] Huang T, Xu G, Tu X, et al. Design of highly sensitive interferometric sensors based on subwavelength grating waveguides operating at the dispersion turning point[J]. J. of the Optical Society of America B, 2021, 38(9): 2680-2686.
Get Citation
Copy Citation Text
XU Yameng, FU Chenyang, SUN Shibo. Research Progresses of Refractive Index Sensing Based on Subwavelength Grating Structures[J]. Semiconductor Optoelectronics, 2022, 43(2): 254
Special Issue:
Received: Mar. 31, 2022
Accepted: --
Published Online: Jul. 21, 2022
The Author Email: Yameng XU (yamengxu@cust.edu.cn)