Acta Optica Sinica, Volume. 44, Issue 3, 0323002(2024)

Tunable Terahertz Coding Metasurface with Switchable Frequency Bands

Jingli Wang1、*, Zhixiong Yang1, Liang Yin1, Xianchao Dong1, Hongdan Wan1, Heming Chen2, and Kai Zhong3
Author Affiliations
  • 1College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu , China
  • 2Bell Honors School, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu , China
  • 3Key Laboratory of Optoelectronics Information Technology, Ministry of Education, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • show less
    References(24)

    [1] Yao J Q, Li J, Zhang Y T et al. Terahertz wave control technology: controlling terahertz light[J]. Chinese Journal of Nature, 45, 1-16(2023).

    [2] Zhang H S, Zhang H J, Liu W et al. Energy efficient user clustering and hybrid precoding for terahertz MIMO-NOMA systems[C](2020).

    [3] Shi C J, Wu X, Peng Y. Applications of terahertz imaging technology in tumor detection[J]. Opto-Electronic Engineering, 47, 190638(2020).

    [4] Zhu Y M, Shi C J, Wu X et al. Terahertz spectroscopy algorithms for biomedical detection[J]. Acta Optica Sinica, 41, 0130001(2021).

    [5] Ma Q, Liu C, Xiao Q et al. Information metasurfaces and intelligent metasurfaces[J]. Photonics Insights, 1, R01(2022).

    [6] Cui T J, Qi M Q, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 3, e218(2014).

    [7] Li J H, Zhang Y T, Li J N et al. Terahertz coding metasurface based vanadium dioxide[J]. Acta Physica Sinica, 69, 228101(2020).

    [8] Li Z L, Wang W, Deng S X et al. Active beam manipulation and convolution operation in VO2-integrated coding terahertz metasurfaces[J]. Optics Letters, 47, 441-444(2022).

    [9] Zhong M, Li J S. Frequency-switchable terahertz vortex beam generator[J]. Acta Physica Sinica, 71, 217401(2022).

    [10] Dai Y W, Chen C, Gao P et al. 2 bit optically controlled programmable terahertz metasurface based on spatially encoded structured light[J]. Acta Optica Sinica, 43, 1124004(2023).

    [11] Zhang H Y, Huang J J, Tian M et al. 3-bit switchable terahertz coding metasurface based on Dirac semimetals[J]. Optics Communications, 527, 128958(2023).

    [12] Wu X D, Cao H L, Peng J H et al. Graphene-based Pancharatnam-Berry phase metasurface in the terahertz domain for dynamically independent amplitude and phase manipulation[J]. Optics Express, 31, 3349-3363(2023).

    [13] Feng Q Y, Qiu G H, Yan D X et al. Wide and narrow band switchable bi-functional metamaterial absorber based on vanadium dioxide[J]. Chinese Optics, 15, 387-403(2022).

    [14] Liu X B, Wang Q, Zhang X Q et al. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface[J]. Advanced Optical Materials, 7, 1900175(2019).

    [15] Wan P Q, Wen T L, Zhang H W. Terahertz dynamic modulator based on the interaction between metamaterials[J]. Electronic Test, 103-106(2022).

    [16] Li Y Y, Fang B, Jin Y X et al. Multi-function scattering beam regulation based on the superposition method of geometric phase coded metasurface sequences[J]. Optics Communications, 502, 127405(2022).

    [17] He J L, Shi Z L, Ye S et al. Mid-infrared reconfigurable all-dielectric metasurface based on Ge2Sb2Se4Te1 phase-change material[J]. Optics Express, 30, 34809-34823(2022).

    [18] He J L, Dong J F. Research progress of tunable multifunctional metasurfaces[J]. Optical Communication Technology, 3, 60-66(2022).

    [19] Zang X F, Zhu Y M, Mao C X et al. Manipulating terahertz plasmonic vortex based on geometric and dynamic phase[J]. Advanced Optical Materials, 7, 1801328(2019).

    [20] Tang X Y, Ke Y H, Jing X F et al. Free manipulation of terahertz wave based on the transmission type geometric phase coding metasurface[J]. Acta Photonica Sinica, 50, 0116002(2021).

    [21] Guo J Y, Li W Y, Sun R et al. Generation of broadband terahertz vortex beam based on double-arrow metasurface[J]. Chinese Journal of Lasers, 48, 2014003(2021).

    [22] Xu H X, Chen Y R, Zhou Y J et al. Dynamically tunable electromagnetic stealth surface[J]. Chinese Journal of Radio Science, 36, 849-857(2021).

    [23] Han X M, Xu H J, Chang Y P et al. Multiple diffuse coding metasurface of independent polarization for RCS reduction[J]. IEEE Access, 8, 162313-162321(2020).

    [24] Yang J J, Cheng Y Z, Gong R Z. RCS reduction property of random coding metasurface[J]. Electronic Components and Materials, 37, 88-94(2018).

    Tools

    Get Citation

    Copy Citation Text

    Jingli Wang, Zhixiong Yang, Liang Yin, Xianchao Dong, Hongdan Wan, Heming Chen, Kai Zhong. Tunable Terahertz Coding Metasurface with Switchable Frequency Bands[J]. Acta Optica Sinica, 2024, 44(3): 0323002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Jul. 18, 2023

    Accepted: Oct. 7, 2023

    Published Online: Feb. 23, 2024

    The Author Email: Wang Jingli (jlwang@njupt.edu.cn)

    DOI:10.3788/AOS231283

    Topics