Semiconductor Optoelectronics, Volume. 43, Issue 4, 625(2022)
Fast Measurement Techniques in Brillouin Optical Time-Domain Fiber Sensing
[1] [1] Bao X, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639.
[2] [2] Kavitha B, Sridevi S, Makam P, et al. Highly sensitive and rapid detection of mercury in water using functionalized etched fiber Bragg grating sensors[J]. Sensors and Actuators B: Chemical, 2021, 333: 129550.
[3] [3] Lu Y, Zhu T, Chen L, et al. Distributed vibration sensor based on coherent detection of phase-OTDR[J]. J. of Lightwave Technol., 2010, 28(22): 3243-3249.
[4] [4] Koyamada Y, Imahama M, Kubota K, et al. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR[J]. J. of Lightwave Technol., 2009, 27(9): 1142-1146.
[5] [5] Dong Y. High-performance distributed Brillouin optical fiber sensing[J]. Photonic Sensors, 2021, 11(1): 69-90.
[6] [6] Yan L, Zhou Y, Li Z, et al. Long-range high-spatial-resolution distributed measurement by a wideband Brillouin amplification-boosted BOCDA[J]. J. of Lightwave Technol., 2022.
[7] [7] Mizuno Y, Zou W, He Z, et al. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR)[J]. Opt. Express, 2008, 16(16): 12148-12153.
[8] [8] Minardo A, Bernini R, Ruiz-Lombera R, et al. Proposal of Brillouin optical frequency-domain reflectometry (BOFDR)[J]. Opt. Express, 2016, 24(26): 29994-30001.
[9] [9] Bernini R, Minardo A, Zeni L. Distributed sensing at centimeter-scale spatial resolution by BOFDA: Measurements and signal processing[J]. IEEE Photonics J., 2011, 4(1): 48-56.
[10] [10] Li W, Bao X, Li Y, et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Opt. Express, 2008, 16(26): 21616-21625.
[11] [11] Wang F, Zhu C, Cao C, et al. Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding[J]. Opt. Express, 2017, 25(4): 3504-3513.
[12] [12] Boyd R W. Nonlinear Optics[M]. Academic Press, 2020.
[13] [13] Zhang Y, Lu Y, Chen L, et al. Segmented noise reduction based on Brillouin-spectrum-partition in Brillouin optical time domain sensors[J]. IEEE Sensors J., 2021, 21(20): 22792-22802.
[14] [14] Ba D, Wang B, Li T, et al. Fast Brillouin optical time-domain reflectometry using the optical chirp chain reference wave[J]. Opt. Lett., 2020, 45(19): 5460-5463.
[15] [15] Yan Y, Wang Y, Zheng H, et al. Dynamic BOTDA based on spectrally efficient frequency-division multiplexing[J]. J. of Lightwave Technol., 2022, 40(13): 4451-4457.
[16] [16] Zheng H, Feng D, Zhang J, et al. Distributed vibration measurement based on a coherent multi-slope-assisted BOTDA with a large dynamic range[J]. Opt. Lett., 2019, 44(5): 1245-1248.
[17] [17] Peng J, Lu Y, Zhang Y, et al. Distributed strain and temperature fast measurement in Brillouin optical time-domain reflectometry based on double-sideband modulation[J]. Opt. Express, 2022, 30(2): 1511-1520.
[18] [18] Xu P, Pang C, Dong X, et al. Fast acquirable Brillouin optical time-domain reflectometry based on bipolar-chirped pulse pair[J]. J. of Lightwave Technol., 2021, 39(12): 3941-3949.
[19] [19] Soto M A, Ramirez J A, Thevenaz L. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration[J]. Nature Communications, 2016, 7: 10870.
[20] [20] Yuan P, Lu Y, Zhang Y, et al. Noise reduction in a Brillouin optical time-domain sensor by a frequency-domain feature filter[J]. Appl. Opt., 2022, 61(10): 2667-2674.
[21] [21] Wu H, Wang L, Zhao Z, et al. Brillouin optical time domain analyzer sensors assisted by advanced image denoising techniques[J]. Opt. Express, 2018, 26(5): 5126-5139.
[22] [22] Wu H, Wan Y, Tang M, et al. Real-time denoising of Brillouin optical time domain analyzer with high data fidelity using convolutional neural networks[J]. J. of Lightwave Technol., 2018, 37(11): 2648-2653.
[23] [23] Luo K, Wang B, Guo N, et al. Enhancing SNR by anisotropic diffusion for Brillouin distributed optical fiber sensors[J]. J. of Lightwave Technol., 2020, 38(20): 5844-5852.
[24] [24] Zhang Y, Lu Y, Zhang Z, et al. Noise reduction by Brillouin spectrum reassembly in Brillouin optical time domain sensors[J]. Optics Lasers in Engin., 2020, 125: 105865.
[25] [25] Haneef S M, Yang Z, Thévenaz L, et al. Performance analysis of frequency shift estimation techniques in Brillouin distributed fiber sensors[J]. Opt. Express, 2018, 26(11): 14661-14677.
[26] [26] Wu H, Wang L, Guo N, et al. Brillouin optical time-domain analyzer assisted by support vector machine for ultrafast temperature extraction[J]. J. of Lightwave Technol., 2017, 35(19): 4159-4167.
[27] [27] Zheng H, Yan Y, Wang Y, et al. Deep learning enhanced long-range fast BOTDA for vibration measurement[J]. J. of Lightwave Technol., 2022, 40(1): 262-268.
[28] [28] Bernini R, Minardo A, Zeni L. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering[J]. Opt. Lett., 2009, 34(17): 2613-2615.
[29] [29] Zhou D, Dong Y, Wang B, et al. Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements[J]. Opt. Express, 2017, 25(3): 1889-1902.
[30] [30] Ba D, Wang B, Zhou D, et al. Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA[J]. Opt. Express, 2016, 24(9): 9781-9793.
[31] [31] Yang G, Fan X, He Z. Strain dynamic range enlargement of slope-assisted BOTDA by using Brillouin phase-gain ratio[J]. J. of Lightwave Technol., 2017, 35(20): 4451-4458.
[32] [32] Yang G, Fan X, Wang B, et al. Enhancing strain dynamic range of slope-assisted BOTDA by manipulating Brillouin gain spectrum shape[J]. Opt. Express, 2018, 26(25): 32599-32607.
[33] [33] Peng J, Lu Y, Zhang Y, et al. Double-slope assisted Brillouin optical time domain reflectometry with linear regions merging[J]. IEEE Photon. Technol. Lett., 2022, 34(15): 819.
[34] [34] Lu Y, Qin Z, Lu P, et al. Distributed strain and temperature measurement by Brillouin beat spectrum[J]. IEEE Photon. Technol. Lett., 2013, 25(11): 1050-1053.
[35] [35] Ji Zhengyuan, Lu Yuangang, Pan Yuhang, et al. Influence of refractive index distribution on Brillouin gain spectrum in GeO2-doped optical fibers[J]. Trans. of Nanjing University of Aeronautics & Astronautics, 2021, 38(5): 769-787.
[36] [36] Peng J, Lu Y, Zhang Z, et al. Distributed temperature and strain measurement based on Brillouin gain spectrum and Brillouin beat spectrum[J]. IEEE Photon. Technol. Lett., 2021, 33(21): 1217-1220.
[37] [37] Soto M A, Ramirez J A, Thévenaz L. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration[J]. Nature Communications, 2016, 7(1): 1-11.
[38] [38] Qian X, Jia X, Wang Z, et al. Noise level estimation of BOTDA for optimal non-local means denoising[J]. Appl. Opt., 2017, 56(16): 4727-4734.
[39] [39] M Linting, Meulman J J, Groenen P J, et al. Nonlinear principal components analysis: introduction and application[J]. Psychological Methods, 2007, 12(3): 336.
[40] [40] Soto M A, Ramírez J A, Thévenaz L. Optimizing image denoising for long-range Brillouin distributed fiber sensing[J]. J. of Lightwave Technol., 2018, 36(4): 1168-1177.
[41] [41] Zha J, Meng Y, Li D, et al. Determination of average times for Brillouin optical time domain analysis sensor denoising by non-local means filtering[J]. Opt. Communications, 2018, 426: 648-653.
[42] [42] Sardy S, Tseng P, Bruce A. Robust wavelet denoising[J]. IEEE Trans. on Signal Processing, 2001, 49(6): 1146-1152.
[43] [43] Wang B, Wang L, Yu C, et al. Long-distance BOTDA sensing systems using video-BM3D denoising for both static and slowly varying environment[J]. Opt. Express, 2019, 27(25): 36100-36113.
[44] [44] Basheer I A, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application[J]. J. of Microbiological Methods, 2000, 43(1): 3-31.
[45] [45] Floch S, Sauser F. New improvements for Brillouin optical time-domain reflectometry[C]// Proc. of the 2017 25th Optical Fiber Sensors Conf. (OFS), 2017.
[46] [46] Meng Y, Zha J, Liu Y. Intensifying the SNR of BOTDA using adaptive constrained least squares filtering[J]. Opt. Communications, 2019, 437: 219-225.
[47] [47] Yang H, Zhao J, Wu H, et al. Noise reduction for time-domain sensing signal of Brillouin scattering based on time series analysis and Kalman filter algorithm[C]// Proc. of the 2019 IEEE Inter. Conf. on Energy Internet (ICEI), 2019, IEEE.
[48] [48] Zaslawski S, Yang Z, Thévenaz L. On the 2D post-processing of Brillouin optical time-domain analysis[J]. J. of Lightwave Technol., 2020, 38(14): 3723-3736.
[49] [49] Farahani M A, Castillo-Guerra E, Colpitts B G. Accurate estimation of Brillouin frequency shift in Brillouin optical time domain analysis sensors using cross correlation[J]. Opt. Lett., 2011, 36(21): 4275-4277.
[50] [50] Farahani M A, Castillo-Guerra E, Colpitts B G. A detailed evaluation of the correlation-based method used for estimation of the Brillouin frequency shift in BOTDA sensors[J]. IEEE Sensors J., 2013, 13(12): 4589-4598.
[51] [51] Wu H, Wang L, Guo N, et al. Support vector machine assisted BOTDA utilizing combined Brillouin gain and phase information for enhanced sensing accuracy[J]. Opt. Express, 2017, 25(25): 31210-31220.
[52] [52] Wu H, Wang L, Zhao Z, et al. Support vector machine based differential pulse-width pair Brillouin optical time domain analyzer[J]. IEEE Photon. J., 2018, 10(4): 1-11.
[53] [53] Zhu H, Yu L, Zhang Y, et al. Optimized support vector machine assisted BOTDA for temperature extraction with accuracy enhancement[J]. IEEE Photon. J., 2019, 12(1): 1-14.
[54] [54] Azad A K, Wang L, Guo N, et al. Signal processing using artificial neural network for BOTDA sensor system[J]. Opt. Express, 2016, 24(6): 6769-6782.
[55] [55] Ruiz-Lombera R, Fuentes A, Rodriguez-Cobo L, et al. Simultaneous temperature and strain discrimination in a conventional BOTDA via artificial neural networks[J]. J. of Lightwave Technol., 2018, 36(11): 2114-2121.
[56] [56] Wang B, Wang L, Guo N, et al. Deep neural networks assisted BOTDA for simultaneous temperature and strain measurement with enhanced accuracy[J]. Opt. Express, 2019, 27(3): 2530-2543.
[57] [57] Liang Y, Jiang J, Chen Y, et al. Optimized feedforward neural network training for efficient Brillouin frequency shift retrieval in fiber[J]. IEEE Access, 2019, 7: 68034-68042.
[58] [58] Wang B, Guo N, Wang L, et al. Robust and fast temperature extraction for Brillouin optical time-domain analyzer by using denoising autoencoder-based deep neural networks[J]. IEEE Sensors J., 2019, 20(7): 3614-3620.
[59] [59] Lu C, Liang Y, Jia X, et al. Artificial neural network for accurate retrieval of fiber Brillouin frequency shift with non-local effects[J]. IEEE Sensors J., 2020, 20(15): 8559-8569.
[60] [60] Chang Y, Wu H, Zhao C, et al. Distributed Brillouin frequency shift extraction via a convolutional neural network[J]. Photon. Research, 2020, 8(5): 690-697.
[61] [61] Wan S, He X, Fang L. Distributed Brillouin fiber sensing based on spectrum line fitting and wavelet packet denoising[J]. Opt. Communications, 2012, 285(24): 4971-4976.
[62] [62] Wang F, Zhan W, Lu Y, et al. Determining the change of Brillouin frequency shift by using the similarity matching method[J]. J. of Lightwave Technol., 2015, 33(19): 4101-4108.
[63] [63] Azad A K, Khan F N, Alarashi W H, et al. Temperature extraction in Brillouin optical time-domain analysis sensors using principal component analysis based pattern recognition[J]. Opt. Express, 2017, 25(14): 16534-16549.
[64] [64] Zheng H, Fang Z, Wang Z, et al. Detailed evaluation of centroid analysis for extracting Brillouin frequency shift of fiber distributed sensors[J]. IEEE Sensors J., 2018, 19(1): 163-170.
[65] [65] Li J, Wang D, Wang Y, et al. A novel method of Brillouin scattering spectrum identification based on Sobel operators in optical fiber sensing system[J]. Opt. and Quantum Electron., 2018, 50(1): 1-8.
[66] [66] Wang Q, Bai Q, Wang Y, et al. Fast peak searching method for Brillouin gain spectrum using positive-slope inflection point[J]. J. of Lightwave Technol., 2021, 40(1): 291-298.
Get Citation
Copy Citation Text
ZHANG Yuyang, LU Yuangang, PENG Jianqin. Fast Measurement Techniques in Brillouin Optical Time-Domain Fiber Sensing[J]. Semiconductor Optoelectronics, 2022, 43(4): 625
Special Issue:
Received: Jul. 30, 2022
Accepted: --
Published Online: Oct. 16, 2022
The Author Email: Yuangang LU (luyg@nuaa.edu.cn)