Infrared and Laser Engineering, Volume. 49, Issue 8, 20190439(2020)

Airborne LiDAR point cloud filtering using saliency division

Fajie Feng1... Yazhou Ding1, Junping Li1, Xingbei Huang2 and Xinyi Liu2,* |Show fewer author(s)
Author Affiliations
  • 1Power China Hubei Electric Engineering Corporation Limited, Wuhan 430040, China
  • 2School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
  • show less
    Figures & Tables(11)
    Virtual grid
    Elevation mutations detection in multiple directions
    Ground saliency calculating
    Layered map of point cloud elevation(a) and gray rendering map of ground saliency(b)
    Roofs of special shape building
    Ground saliency distribution of center sunken buildings area
    Comparison of filtering result of site 1 and 9. (a) Filtering result of site 1; (b) original point clouds; (c) filtering result of site 9; (d) original point clouds
    • Table 1.

      Landform in each subarea

      各子测区地形

      View table
      View in Article

      Table 1.

      Landform in each subarea

      各子测区地形

      AreaTerrain properties
      Topographic reliefObjects
      1SmoothBuildings, vegetation, waterbody
      2SmoothComplicated buildings, vegetation
      3SmoothComplicated buildings, viaduct
      4SmoothComplicated buildings, vegetation
      5LargeBuildings, waterbody, terrain fault
      6LargeVegetation, buildings, viaduct
      7SmoothBuildings and vegetation
      8LargeBuildings, power line, viaduct
      9LargeSlope, vegetation, steep, viaduct
    • Table 2.

      Assessment criteria of crosstab method

      交叉表法评价指标

      View table
      View in Article

      Table 2.

      Assessment criteria of crosstab method

      交叉表法评价指标

      Data typeFiltering resultsSum
      GroundNon-ground
      Groundabe = a + b
      Non-groundcdf = c + d
      Sumg = a + ch = b + dn = e + f
    • Table 3.

      Error rate in different terrains using different threshold γ(%)

      在不同区域使用不同γ阈值的错误率(%)

      View table
      View in Article

      Table 3.

      Error rate in different terrains using different threshold γ(%)

      在不同区域使用不同γ阈值的错误率(%)

      γ1γ2Site1Site2
      E1 E2 Et E1 E2 Et
      0.3750.54.04.64.34.77.45.4
      0.3750.6254.04.74.44.87.45.5
      0.3750.754.04.74.45.07.35.7
      0.3750.8754.04.74.45.37.35.8
      0.50.6254.03.63.85.27.15.6
      0.50.754.03.63.85.37.05.8
      0.50.8754.03.63.85.57.05.9
      0.6250.754.03.33.66.36.36.3
      0.6250.8754.03.33.66.56.36.4
      0.750.8754.03.23.68.75.27.8
    • Table 4.

      Comparison and analysis of filtering accuracy

      滤波精度对比分析

      View table
      View in Article

      Table 4.

      Comparison and analysis of filtering accuracy

      滤波精度对比分析

      AreaPMPTDCSFProposed
      E1 E2 Et KE1 E2 Et KE1 E2 Et KE1 E2 Et K
      14.293.623.9392.093.455.494.5490.893.994.024.0090.634.003.153.5592.87
      25.657.576.7286.413.178.436.1187.686.066.466.2985.543.767.005.5788.75
      34.503.904.1991.602.014.273.1993.604.643.864.2390.973.613.123.3693.27
      46.776.016.3887.233.345.584.5090.994.676.815.7886.325.275.115.1989.61
      53.414.614.1990.903.804.474.2390.787.383.895.1188.763.313.963.7391.88
      66.583.994.8889.226.223.254.2790.532.925.254.4588.603.303.243.2692.82
      711.589.3510.6778.173.229.095.6288.293.6211.536.8683.624.9810.517.2484.93
      89.063.166.0587.892.854.353.6192.762.296.024.2090.033.113.303.2193.58
      96.813.344.7190.123.325.054.3790.934.9312.899.7479.372.535.704.4590.80
    Tools

    Get Citation

    Copy Citation Text

    Fajie Feng, Yazhou Ding, Junping Li, Xingbei Huang, Xinyi Liu. Airborne LiDAR point cloud filtering using saliency division[J]. Infrared and Laser Engineering, 2020, 49(8): 20190439

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 激光器与激光光学

    Received: Dec. 5, 2019

    Accepted: --

    Published Online: Dec. 31, 2020

    The Author Email: Liu Xinyi (liuxy0319@whu.edu.cn)

    DOI:10.3788/IRLA20190439

    Topics