Acta Photonica Sinica, Volume. 50, Issue 8, 0850201(2021)

Progress on the Ultrahigh Spatiotemporal-resolved Photoemission Electron Microscopy (Invited)

Yaolong LI, Yunquan LIU, and Qihuang GONG
Author Affiliations
  • Institute of Modern Optics, School of Physics, Peking University, Beijing100871, China
  • show less
    References(56)

    [1] GONG Qihuang, ZHAO Wei. Ultrafast science to capture ultrafast motions[J]. Ultrafast Science, 2021, 9765859(2021).

    [2] MERLEN A, LAGUGNé-LABARTHET F. Imaging the optical near field in plasmonic nanostructures[J]. Applied Spectroscopy, 68, 1307-1326(2014).

    [3] PETEK H, OGAWA S. Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals[J]. Progress in Surface Science, 56, 239-310(1997).

    [4] BAUER M, MARIENFELD A, AESCHLIMANN M. Hot electron lifetimes in metals probed by time-resolved two-photon photoemission[J]. Progress in Surface Science, 90, 319-376(2015).

    [5] FUKUMOTO K, ONDA K, YAMADA Y et al. Femtosecond time-resolved photoemission electron microscopy for spatiotemporal imaging of photogenerated carrier dynamics in semiconductors[J]. Review of Scientific Instruments, 85(2014).

    [6] FUKUMOTO K, YAMADA Y, ONDA K et al. Direct imaging of electron recombination and transport on a semiconductor surface by femtosecond time-resolved photoemission electron microscopy[J]. Applied Physics Letters, 104(2014).

    [7] FUKUMOTO K, BOUTCHICH M, AREZKI H et al. Ultrafast electron dynamics in twisted graphene by femtosecond photoemission electron microscopy[J]. Carbon, 124, 49-56(2017).

    [8] MAN M K L, MARGIOLAKIS A, DECKOFF-JONES S et al. Imaging the motion of electrons across semiconductor heterojunctions[J]. Nature Nanotechnology, 12, 36(2016).

    [9] WANG Lin, XU Ce, LI Mingyang et al. Unraveling spatially heterogeneous ultrafast carrier dynamics of single-layer WSe2 by femtosecond time-resolved photoemission electron microscopy[J]. Nano Letters, 18, 5172-5178(2018).

    [10] SALA A[M]. Imaging at the mesoscale (LEEM, PEEM), 387-425(2020).

    [11] DABROWSKI M, DAI Yanan, PETEK H. Ultrafast photoemission electron microscopy: imaging plasmons in space and time[J]. Chemical Reviews, 120, 6247-6287(2020).

    [12] WANG Ke, ECKER B, GAO Yongli. Angle-resolved photoemission study on the band structure of organic single crystals[J]. Crystals, 10, 773(2020).

    [13] SUN Quan, YU Han, UENO K et al. Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy[J]. ACS Nano, 10, 3835-3842(2016).

    [14] WALLAUER R, REIMANN J, ARMBRUST N et al. Intervalley scattering in MoS2 imaged by two-photon photoemission with a high-harmonic probe[J]. Applied Physics Letters, 109, 162102(2016).

    [15] MENTES T O, LOCATELLI A. Angle-resolved X-ray photoemission electron microscopy[J]. Journal of Electron Spectroscopy and Related Phenomena, 185, 323-329(2012).

    [16] MARCHETTO H. High-resolution spectro-microscopic investigations of organic thin film growth[D](2006).

    [17] ERNST F, RÜHLE M. High-resolution imaging and spectrometry of materials[M]. Springer Science & Business Media(2003).

    [18] LEHR M, FOERSTER B, SCHMITT M et al. Momentum distribution of electrons emitted from resonantly excited individual gold nanorods[J]. Nano Letters, 17, 6606-6612(2017).

    [19] MADéO J, MAN M K L, SAHOO C et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors[J]. Science, 370, 1199(2020).

    [20] KEUNECKE M, MöLLER C, SCHMITT D et al. Time-resolved momentum microscopy with a 1 MHz high-harmonic extreme ultraviolet beamline[J]. Review of Scientific Instruments, 91(2020).

    [21] SUN Quan, ZU Shuai, MISAWA H. Ultrafast photoemission electron microscopy: Capability and potential in probing plasmonic nanostructures from multiple domains[J]. The Journal of Chemical Physics, 153, 120902(2020).

    [22] HUBER B, PRES S, WITTMANN E et al. Space- and time-resolved UV-to-NIR surface spectroscopy and 2D nanoscopy at 1 MHz repetition rate[J]. Review of Scientific Instruments, 90, 113103(2019).

    [23] NIE Zhaogang, LONG Run, SUN Linfeng et al. Ultrafast carrier thermalization and cooling dynamics in few-layer MoS2[J]. ACS Nano, 8, 10931-10940(2014).

    [24] SUN Dezheng, RAO Yi, REIDER G A et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide[J]. Nano Letters, 14, 5625-5629(2014).

    [25] LI Linqiu, LIN Mingfu, ZHANG Xiang et al. Phonon-suppressed auger scattering of charge carriers in defective two-dimensional transition metal dichalcogenides[J]. Nano Letters, 19, 6078-6086(2019).

    [26] HONG Xiaoping, KIM J, SHI Sufei et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures[J]. Nature Nanotechnology, 9, 682(2014).

    [27] LIEN D, UDDIN S Z et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors[J]. Science, 364, 468(2019).

    [28] HEIN P, STANGE A, HANFF K et al. Momentum-resolved hot electron dynamics at the 2H-MoS2 surface[J]. Physical Review B, 94, 205406(2016).

    [29] CINCHETTI M, GLOSKOVSKII A, NEPJIKO S A et al. Photoemission electron microscopy as a tool for the investigation of optical near fields[J]. Physical Review Letters, 95(2005).

    [30] KUBO A, ONDA K, PETEK H et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film[J]. Nano Letters, 5, 1123-1127(2005).

    [31] KUBO A, PONTIUS N, PETEK H. Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface[J]. Nano Letters, 7, 470-475(2007).

    [32] AESCHLIMANN M, BAUER M, BAYER D et al. Adaptive subwavelength control of nano-optical fields[J]. Nature, 446, 301(2007).

    [33] PODBIEL D, KAHL P, MAKRIS A et al. Imaging the nonlinear plasmoemission dynamics of electrons from strong plasmonic fields[J]. Nano Letters, 17, 6569-6574(2017).

    [34] DAI Yanan, DABROWSKI M, APKARIAN V A et al. Ultrafast microscopy of spin-momentum-locked surface plasmon polaritons[J]. ACS Nano, 12, 6588-6596(2018).

    [35] SPEKTOR G, KILBANE D, MAHRO A K et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices[J]. Science, 355, 1187(2017).

    [36] DAVIS T J, JANOSCHKA D, DREHER P et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution[J]. Science, 368(2020).

    [37] DAI Yanan, ZHOU Zhikang, GHOSH A et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales[J]. Nature, 588, 616-619(2020).

    [38] LI Yaolong, SUN Quan, ZU Shuai et al. Correlation between near-field enhancement and dephasing time in plasmonic dimers[J]. Physical Review Letters, 124, 163901(2020).

    [39] SCHERTZ F, SCHMELZEISEN M, KREITER M et al. Field emission of electrons generated by the near field of strongly coupled plasmons[J]. Physical Review Letters, 108, 237602(2012).

    [40] SUN Quan, UENO K, YU Han et al. Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy[J]. Light: Science & Applications, 2(2013).

    [41] YU Han, SUN Quan, UENO K et al. Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy[J]. ACS Nano, 10, 10373-10381(2016).

    [42] FOERSTER B, HARTELT M, COLLINS S S E et al. Interfacial states cause equal decay of plasmons and hot electrons at gold–metal oxide interfaces[J]. Nano Letters, 20, 3338-3343(2020).

    [43] KAHL P, WALL S, WITT C et al. Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons[J]. Plasmonics, 9, 1401-1407(2014).

    [44] TALLEY C E, JACKSON J B, OUBRE C et al. Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates[J]. Nano Letters, 5, 1569-1574(2005).

    [45] SHI Xu, UENO K, OSHIKIRI T et al. Enhanced water splitting under modal strong coupling conditions[J]. Nature Nanotechnology, 13, 953-958(2018).

    [46] SONNICHSEN C, FRANZL T, WILK T et al. Drastic reduction of plasmon damping in gold nanorods[J]. Physical Review Letters, 88(2002).

    [47] FOERSTER B, SPATA V A, CARTER E A et al. Plasmon damping depends on the chemical nature of the nanoparticle interface[J]. Science Advances, 5(2019).

    [48] HANKE T, KRAUSS G, TRäUTLEIN D et al. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses[J]. Physical Review Letters, 103, 257404(2009).

    [49] LAMPRECHT B, KRENN J R, LEITNER A et al. Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation[J]. Physical Review Letters, 83, 4421(1999).

    [50] FUKUMOTO K, YAMADA Y, KOSHIHARA S et al. Lifetimes of photogenerated electrons on a GaAs surface affected by nanostructural defects[J]. Applied Physics Express, 8, 101201(2015).

    [51] WONG E L, WINCHESTER A J, PAREEK V et al. Pulling apart photoexcited electrons by photoinducing an in-plane surface electric field[J]. Science Advances, 4(2018).

    [52] WITTENBECHER L, VIñAS B E, VOGELSANG J et al. Unraveling the ultrafast hot electron dynamics in semiconductor nanowires[J]. ACS Nano, 15, 1133-1144(2021).

    [53] LI Yaolong, LIU Wei, WANG Yunkun et al. Ultrafast electron cooling and decay in monolayer ws2 revealed by time- and energy-resolved photoemission electron microscopy[J]. Nano Letters, 20, 3747-3753(2020).

    [54] LIU Huan, WANG Chong, ZUO Zhengguang et al. Direct visualization of exciton transport in defective few-layer WS2 by ultrafast microscopy[J]. Advanced Materials, 32, 1906540(2020).

    [55] WANG Yunkun, LI Yaolong, GAO Yunan. Progress on defect and related carrier dynamics in two-dimensional transition metal chalcogenides[J]. Chinese Optics, 14, 18-42(2021).

    [56] LIU Wei, YU Haoran, LI Yaolong et al. Mapping trap dynamics in a CsPbBr3 single-crystal microplate by ultrafast photoemission electron microscopy[J]. Nano Letters, 21, 2932-2938(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yaolong LI, Yunquan LIU, Qihuang GONG. Progress on the Ultrahigh Spatiotemporal-resolved Photoemission Electron Microscopy (Invited)[J]. Acta Photonica Sinica, 2021, 50(8): 0850201

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for Ultrafast Optics

    Received: May. 8, 2021

    Accepted: Jun. 9, 2021

    Published Online: Sep. 1, 2021

    The Author Email:

    DOI:10.3788/gzxb20215008.0850201

    Topics