Ultrafast Science, Volume. 2, Issue 1, 9767251(2022)
Theoretical Insights into Ultrafast Dynamics in Quantum Materials
[1] [1] F. Giustino, “Electron-phonon interactions from first principles,” Reviews of Modern Physics, vol. 89, no. 1, article 015003, 2017
[3] [3] N. P. Armitage, E. J. Mele, and A. Vishwanath, “Weyl and Dirac semimetals in three-dimensional solids,” Reviews of Modern Physics, vol. 90, no. 1, article 015001, 2018
[4] [4] S. Y. Kruchinin, F. Krausz, and V. S. Yakovlev, “Colloquium: strong-field phenomena in periodic systems,” Reviews of Modern Physics, vol. 90, no. 2, article 021002, 2018
[5] [5] M. F. Ciappina, J. A. Pérez-Hernández, A. S. Landsman, W. A. Okell, S. Zherebtsov, B. Förg, J. Schötz, L. Seiffert, T. Fennel, T. Shaaran, T. Zimmermann, A. Chacón, R. Guichard, A. Zaïr, J. W. G. Tisch, J. P. Marangos, T. Witting, A. Braun, S. A. Maier, L. Roso, M. Krüger, P. Hommelhoff, M. F. Kling, F. Krausz, and M. Lewenstein, “Attosecond physics at the nanoscale,” Reports on Progress in Physics, vol. 80, no. 5, article 054401, 2017
[8] [8] F. Rossi, and T. Kuhn, “Theory of ultrafast phenomena in photoexcited semiconductors,” Reviews of Modern Physics, vol. 74, p. 895, 2002
[9] [9] H. Yanagisawa, C. Hafner, P. Doná, M. Klöckner, D. Leuenberger, T. Greber, M. Hengsberger, and J. Osterwalder, “Optical control of field-emission sites by femtosecond laser pulses,” Physical Review Letters, vol. 103, no. 25, 2009
[11] [11] T. Brabec, and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Reviews of Modern Physics, vol. 72, no. 2, pp. 545–591, 2000
[14] [14] D. Park, and Y. Ahn, “Ultrashort field emission in metallic nanostructures and low-dimensional carbon materials,” Advances in Physics: X, vol. 5, no. 1, article 1726207, 2020
[15] [15] S. Zhou, K. Chen, M. T. Cole, Z. Li, J. Chen, C. Li, and Q. Dai, “Ultrafast field-emission electron sources based on nanomaterials,” Advanced Materials, vol. 31, no. 45, article 1805845, 2019
[21] [21] E. Runge, and E. K. U. Gross, “Density-functional theory for time-dependent systems,” Physical Review Letters, vol. 52, no. 12, pp. 997–1000, 1984
[23] [23] N. Tancogne-Dejean, M. J. T. Oliveira, X. Andrade, H. Appel, C. H. Borca, G. le Breton, F. Buchholz, A. Castro, S. Corni, A. A. Correa, U. de Giovannini, A. Delgado, F. G. Eich, J. Flick, G. Gil, A. Gomez, N. Helbig, H. Hübener, R. Jestädt, J. Jornet-Somoza, A. H. Larsen, I. V. Lebedeva, M. Lüders, M. A. L. Marques, S. T. Ohlmann, S. Pipolo, M. Rampp, C. A. Rozzi, D. A. Strubbe, S. A. Sato, C. Schäfer, I. Theophilou, A. Welden, and A. Rubio, “Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems,” The Journal of Chemical Physics, vol. 152, no. 12, article 124119, 2020
[24] [24] C. A. Ullrich Time-Dependent Density-Functional Theory: Concepts and Applications (OUP), Oxford University Press (OUP), Oxford, 2011
[26] [26] N. Tancogne-Dejean, M. A. Sentef, and A. Rubio, “Ultrafast modification of Hubbard U in a strongly correlated material: ab initio high-harmonic generation in NiO,” Physical Review Letters, vol. 121, no. 9, article 097402, 2018
[27] [27] M. H. Beck, A. Jäckle, G. A. Worth, and H.-D. Meyer, “The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets,” Physics Reports, vol. 324, no. 1, pp. 1–105, 2000
[28] [28] B. F. Curchod, and T. J. Martínez, “Ab initio nonadiabatic quantum molecular dynamics,” Chemical Reviews, vol. 118, no. 7, pp. 3305–3336, 2018
[29] [29] J. C. Tully, and R. K. Preston, “Trajectory surface hopping approach to nonadiabatic molecular collisions: the reaction of H+ with D2,” The Journal of Chemical Physics, vol. 55, no. 2, pp. 562–572, 1971
[30] [30] B. F. Curchod, I. Tavernelli, and U. Rothlisberger, “Trajectory-based solution of the nonadiabatic quantum dynamics equations: an on-the-fly approach for molecular dynamics simulations,” Physical Chemistry Chemical Physics, vol. 13, no. 8, pp. 3231–3236, 2011
[31] [31] D. Mac Kernan, G. Ciccotti, and R. Kapral, “Trotter-based simulation of quantum-classical dynamics,” The Journal of Physical Chemistry B, vol. 112, no. 2, pp. 424–432, 2008
[32] [32] F. Agostini, S. K. Min, A. Abedi, and E. Gross, “Quantum-classical nonadiabatic dynamics: coupled-vs independent-trajectory methods,” Journal of Chemical Theory Computation, vol. 12, no. 5, pp. 2127–2143, 2016
[34] [34] H. D. Meyera, and W. H. Miller, “A classical analog for electronic degrees of freedom in nonadiabatic collision processes,” The Journal of Chemical Physics, vol. 70, no. 7, pp. 3214–3223, 1979
[35] [35] S. Meng, and E. Kaxiras, “Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations,” The Journal of Chemical Physics, vol. 129, no. 5, article 054110, 2008
[36] [36] C. Lian, M. Guan, S. Hu, J. Zhang, and S. Meng, “Photoexcitation in solids: first-principles quantum simulations by real-time TDDFT,” Advanced Theory and Simulations, vol. 1, no. 8, article 1800055, 2018
[37] [37] P. You, D. Chen, C. Lian, C. Zhang, and S. Meng, “First-principles dynamics of photoexcited molecules and materials towards a quantum description,” Wiley Interdisciplinary Reviews: Computational Molecular Science, vol. 11, no. 2, 2021
[38] [38] M. Guan, S. Hu, H. Zhao, C. Lian, and S. Meng, “Toward attosecond control of electron dynamics in two-dimensional materials,” Applied Physics Letters, vol. 116, no. 4, article 043101, 2020
[40] [40] M.-X. Guan, C. Lian, S.-Q. Hu, H. Liu, S.-J. Zhang, J. Zhang, and S. Meng, “Cooperative evolution of intraband and interband excitations for high-harmonic generation in strained MoS2,” Physical Review B, vol. 99, no. 18, article 184306, 2019
[42] [42] M. X. Guan, E. Wang, P. W. You, J. T. Sun, and S. Meng, “Manipulating Weyl quasiparticles by orbital-selective photoexcitation in WTe2,” Nature Communications, vol. 12, no. 1, p. 1885, 2021
[43] [43] C. Lian, S. J. Zhang, S. Q. Hu, M. X. Guan, and S. Meng, “Ultrafast charge ordering by self-amplified exciton-phonon dynamics in TiSe2,” Nature Communications, vol. 11, no. 1, p. 43, 2020
[45] [45] K. Dewhurst, S. Sharma, L. Nordstrom, F. Cricchio, F. Bultmark, H. Gross, C. Ambrosch-Draxl, C. Persson, C. Brouder, and R. Armiento The elk FP-LAPW code, ELK, 2016,
[48] [48] D. B. Williams, and C. B. Carter Transmission Electron Microscopy, Springer, 1996
[50] [50] J. C. Johannsen, S. Ulstrup, F. Cilento, A. Crepaldi, M. Zacchigna, C. Cacho, I. C. E. Turcu, E. Springate, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, and P. Hofmann, “Direct view of hot carrier dynamics in graphene,” Physical Review Letters, vol. 111, no. 2, article 027403, 2013
[51] [51] P. Hein, S. Jauernik, H. Erk, L. Yang, Y. Qi, Y. Sun, C. Felser, and M. Bauer, “Mode-resolved reciprocal space mapping of electron-phonon interaction in the Weyl semimetal candidate Td-WTe2,” Nature Communications, vol. 11, no. 1, p. 2613, 2020
[53] [53] J. L. Krause, K. J. Schafer, and K. C. Kulander, “High-order harmonic generation from atoms and ions in the high intensity regime,” Physical Review Letters, vol. 68, no. 24, pp. 3535–3538, 1992
[54] [54] F. Yao, C. Liu, C. Chen, S. Zhang, Q. Zhao, F. Xiao, M. Wu, J. Li, P. Gao, J. Zhao, X. Bai, S. Maruyama, D. Yu, E. Wang, Z. Sun, J. Zhang, F. Wang, and K. Liu, “Measurement of complex optical susceptibility for individual carbon nanotubes by elliptically polarized light excitation,” Nature Communications, vol. 9, no. 1, p. 3387, 2018
[55] [55] G. Vampa, T. Hammond, N. Thiré, B. Schmidt, F. Légaré, C. McDonald, T. Brabec, D. Klug, and P. Corkum, “All-optical reconstruction of crystal band structure,” Physical Review Letters, vol. 115, no. 19, article 193603, 2015
[56] [56] T. T. Luu, and H. J. Wörner, “Measurement of the Berry curvature of solids using high-harmonic spectroscopy,” Nature Communications, vol. 9, no. 1, p. 916, 2018
[57] [57] L. Li, P. Lan, X. Zhu, T. Huang, Q. Zhang, M. Lein, and P. Lu, “Reciprocal-space-trajectory perspective on high-harmonic generation in solids,” Physical Review Letters, vol. 122, no. 19, article 193901, 2019
[58] [58] D. Bauer, and K. K. Hansen, “High-harmonic generation in solids with and without topological edge states,” Physical Review Letters, vol. 120, no. 17, article 177401, 2018
[59] [59] S. Hüller, and J. Meyer-ter-Vehn, “High-order harmonic radiation from solid layers irradiated by subpicosecond laser pulses,” Physical Review A, vol. 48, no. 5, pp. 3906–3909, 1993
[60] [60] P. Kálmán, and T. Brabec, “Generation of coherent hard-x-ray radiation in crystalline solids by high-intensity femtosecond laser pulses,” Physical Review A, vol. 52, no. 1, pp. R21–R24, 1995
[61] [61] G. Vampa, C. McDonald, G. Orlando, D. Klug, P. Corkum, and T. Brabec, “Theoretical analysis of high-harmonic generation in solids,” Physical Review Letters, vol. 113, no. 7, article 073901, 2014
[62] [62] D. Golde, T. Meier, and S. W. Koch, “High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations,” Physical Review B, vol. 77, no. 7, article 075330, 2008
[63] [63] Y. Kobayashi, C. Heide, H. K. Kelardeh, A. Johnson, F. Liu, T. F. Heinz, D. A. Reis, and S. Ghimire, “Polarization flipping of even-order harmonics in monolayer transition-metal dichalcogenides,” Ultrafast Science, vol. 2021, article 9820716, pp. 1–9, 2021
[65] [65] B. Xue, Y. Tamaru, Y. Fu, H. Yuan, P. Lan, O. D. Mücke, A. Suda, K. Midorikawa, and E. J. Takahashi, “A custom-tailored multi-TW optical electric field for gigawatt soft-X-ray isolated attosecond pulses,” Ultrafast Science, vol. 2021, article 9828026, pp. 1–13, 2021
[66] [66] J. Mauritsson, J. M. Dahlström, E. Mansten, and T. Fordell, “Sub-cycle control of attosecond pulse generation using two-colour laser fields,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 42, no. 13, article 134003, 2009
[67] [67] I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, “Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field,” Physical Review Letters, vol. 94, no. 24, article 243901, 2005
[69] [69] M. Calandra, and F. Mauri, “Charge-density wave and superconducting dome in TiSe2 from electron-phonon interaction,” Physical Review Letters, vol. 106, no. 19, 2011
[70] [70] C. Chen, B. Singh, H. Lin, and V. M. Pereira, “Reproduction of the charge density wave phase diagram in1T−TiSe2 Exposes its excitonic character,” Physical Review Letters, vol. 121, no. 22, article 226602, 2018
[72] [72] L. Perfetti, P. A. Loukakos, M. Lisowski, U. Bovensiepen, H. Berger, S. Biermann, P. S. Cornaglia, A. Georges, and M. Wolf, “Time evolution of the electronic structure of 1T-TaS2 through the insulator-metal transition,” Physical Review Letters, vol. 97, no. 6, article 067402, 2006
[75] [75] M. Y. Zhang, Z. X. Wang, Y. N. Li, L. Y. Shi, D. Wu, T. Lin, S. J. Zhang, Y. Q. Liu, Q. M. Liu, J. Wang, T. Dong, and N. L. Wang, “Light-induced subpicosecond lattice symmetry switch inMoTe2,” Physical Review X, vol. 9, no. 2, article 021036, 2019
[76] [76] R. Yu, H. Weng, Z. Fang, H. Ding, and X. Dai, “Determining the chirality of Weyl fermions from circular dichroism spectra in time-dependent angle-resolved photoemission,” Physical Review B, vol. 93, no. 20, article 205133, 2016
[77] [77] C.-K. Chan, N. H. Lindner, G. Refael, and P. A. Lee, “Photocurrents in Weyl semimetals,” Physical Review B, vol. 95, no. 4, article 041104(R), 2017
[78] [78] R. V. Anže Mraz, M. Diego, A. Kranjec, D. Svetin, Y. Gerasimenko, V. Sever, I. A. Mihailovic, J. Ravnik, I. Vaskivskyi, M. D'Antuono, D. Stornaiulo, F. Tafuri, D. Kazazis, Y. Ekinci, and D. Mihailovic, “Energy efficient manipulation of topologically protected states in non-volatile ultrafast charge configuration memory devices,”, 2021,
[79] [79] A. de la Torre, D. M. Kennes, M. Claassen, S. Gerber, J. W. McIver, and M. A. Sentef, “Nonthermal pathways to ultrafast control in quantum materials,”, 2021,
[80] [80] P. You, J. Xu, C. Lian, C. Zhang, X.-Z. Li, E.-G. Wang, and S. Meng, “Quantum dynamics simulations: combining path integral nuclear dynamics and real-time TDDFT,” Electronic Structure, vol. 1, no. 4, article 044005, 2019
Get Citation
Copy Citation Text
Mengxue Guan, Daqiang Chen, Shiqi Hu, Hui Zhao, Peiwei You, Sheng Meng. Theoretical Insights into Ultrafast Dynamics in Quantum Materials[J]. Ultrafast Science, 2022, 2(1): 9767251
Category: Research Articles
Received: Sep. 30, 2021
Accepted: Nov. 17, 2021
Published Online: Sep. 28, 2023
The Author Email: Guan Mengxue (mxguan@iphy.ac.cn), Meng Sheng (smeng@iphy.ac.cn)