Acta Photonica Sinica, Volume. 49, Issue 1, 0128002(2020)

Feature Enhancement SSD Algorithm and Its Application in Remote Sensing Images Target Detection

Wen-xu SHI1...2, Dai-lun TAN3, and Sheng-li BAO12,* |Show fewer author(s)
Author Affiliations
  • 1Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu 610081, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3School of Mathematics and Information, China West Normal University, Nanchong, Sichuang 637009, China
  • show less
    Figures & Tables(11)
    SSD算法框架图SSD overall framework
    FESSD算法框架图、浅层特征增强模块和深层特征增强模块图FESSD overall framework, shallow feature enhancement module and deep feature enhancement module
    特征增强前后特征图对比Comparison of feature maps before and after feature enhancement
    数据集部分样本示例Samples of the dataset
    不同IOU情况下平均精度与召回率关系Recall vs. average of each class precision graph in different IOU conditions
    FESSD算法对光学遥感图像检测示例Examples of FESSD algorithm for optical remote sensing image detection
    Examples of FESSD and SSD algorithm migration experiment detection
    • Table 1. Self-collected data set statistics

      View table
      View in Article

      Table 1. Self-collected data set statistics

      Data setClass#Image#InstancesTarget amount(percentage)
      SmallMediumLarge
      Training setAircraft3202 3821 4918901
      Oiltank2201 7358848456
      Ship4001 31765958870
      Overpass14014300143
      Playground14015408146
      Test setAircraft1019705713981
      Oiltank787593743850
      Ship7041521019510
      Overpass36400733
      Playground49540549
    • Table 2. Detection accuracy and speed of objects in remote sensing images by various algorithms

      View table
      View in Article

      Table 2. Detection accuracy and speed of objects in remote sensing images by various algorithms

      MethodBackboneMetric/%FPS
      AircraftOiltankShipOver-passPlay-groundmAP(IOU=0.5)
      Faster R-CNN[5]VGG1669.7769.5966.8871.1089.9473.464.4
      YOLO[6]GoogleNet60.2658.4759.1462.2187.5765.5350.6
      YOLO V2[9]DarkNet1970.1271.2467.2569.4187.5073.1025.3
      SSD300[7]VGG1669.9170.7366.3970.9091.8773.9650.4
      DSSD321[11]ResNet-10175.7573.1170.3271.2290.5276.184.3
      ESSD321[12]VGG1677.2673.2671.0670.8590.8776.6624.6
      FFSSD300[13]VGG1675.9473.4270.5670.9690.4776.2728.7
      FESSD(ours)300VGG1679.0176.1272.2771.0591.9678.0848.6
      SSD512[7]VGG1671.5672.2870.0471.2992.0575.4428.6
      DSSD513[11]ResNet-10176.4875.7171.6272.0591.2577.422.1
      ESSD321[12]VGG1677.4575.8972.3471.4491.6677.7612.3
      FFSSD512[13]VGG1677.2376.8972.3671.5991.6177.9413.4
      FESSD(ours)512VGG1680.9678.2273.5671.8992.1679.3626.3
    • Table 3. The influence of feature enhancement on target detection in optical remote sensing images

      View table
      View in Article

      Table 3. The influence of feature enhancement on target detection in optical remote sensing images

      SSDSFEDFEMetric/%FPS
      AircraftOiltankShipOverpassPlaygroundmAP
      69.9170.7366.3970.9091.8773.9650.4
      78.3875.4571.6370.0690.9177.2935.6
      72.2671.6270.3371.5191.4775.4455.8
      79.0176.1272.2771.0591.9678.0848.6
    • Table 4. The influence of each independent module on target detection in optical remote sensing images

      View table
      View in Article

      Table 4. The influence of each independent module on target detection in optical remote sensing images

      mAP+DFE_11+DFE_10+DFE_9+DFE_8+SFE2+SFE1
      73.96
      76.57
      77.29
      77.45
      77.86
      77.99
      78.08
    Tools

    Get Citation

    Copy Citation Text

    Wen-xu SHI, Dai-lun TAN, Sheng-li BAO. Feature Enhancement SSD Algorithm and Its Application in Remote Sensing Images Target Detection[J]. Acta Photonica Sinica, 2020, 49(1): 0128002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 29, 2019

    Accepted: Oct. 22, 2019

    Published Online: Mar. 19, 2020

    The Author Email: BAO Sheng-li (baohigh@casit.com.cn)

    DOI:10.3788/gzxb20204901.0128002

    Topics