Optics and Precision Engineering, Volume. 28, Issue 8, 1799(2020)
Target part recognition based Inception-SSD algorithm
[1] [1] YUAN J SH, CUI K B, LI B SH. Identification and location of insulator video images based on ASIFT algorithm[J]. Electrical Measurement & Instrumentation, 2015, (7): 113-119. (in Chinese)
[2] [2] WAN Y, LI H H, WU K F, et al.. Fusion with Layered Features of LBP and HOG for face recognition[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, (4): 640-650. (in Chinese)
[3] [3] WANG D, ZHANG X H. Biomimetic recognition method of human behavior based on HOG and SVM[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(S1): 489-492. (in Chinese)
[4] [4] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. MIT Press Journals, 2006, 18(7): 1527-1554.
[5] [5] REN S, HE K, GIRSHICK R, et al.. Faster R-CNN: Towards real-time object detection with region proposal Networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 39(6): 1137-1149.
[6] [6] HE K, GEORGIA G, PIOTR D, et al.. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018: 1-1.
[7] [7] REDMON J, DIVVALA S, GIRSHICK R, et al.. You only look once: Unified, real-time object detection[C]. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Piscataway: IEEE, 2016: 779-788.
[8] [8] LIU W, ANGUELOV D, ERHAN D, et al.. SSD: single shot multibox detector[C]. Proceedings of the 2016 European Conference on Computer Vision, Cham: Springer, 2016: 21-37.
[12] [12] SZEGEDY C, LIU W, JIA Y, et al.. Going deeper with convolutions[C]. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Piscataway: IEEE, 2015: 1-9.
[13] [13] SZEGEDY C, VANHOUCKE V, IOFFE S, et al.. Rethinking the inception architecture for computer vision[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2015: 2818-2826.
[14] [14] SZEGEDY C, IOFFE S, VANHOUCKE V, et al.. Inception-v4, inception-ResNet and the impact of residual connections on learning[J]. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), 2016: 4278-4284.
[15] [15] WANG X, XIAO T, JIANG Y, et al.. Repulsion loss: Detecting pedestrians in a crowd[C]. Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Piscataway: IEEE, 2018: 7774-7783.
[16] [16] DENG J, DONG W, SOCHER R, et al.. Imagenet: A large-scale hierarchical image database[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, New York: IEEE Press, 2009: 248-255.
[17] [17] VINYALS O, TOSHEV A, BENGIO S, et al.. Show and tell: lessons learned from the 2015 mscoco image captioning challenge[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016, 39(4): 652-663.
[18] [18] XIANG Y, MOTTAGHI R, SAVARESE S. Beyond PASCAL: A benchmark for 3D object detection in the wild[C]. IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE Computer Society, 2014: 75-82.
[19] [19] ZHENG ZH Q, LIU Y Y, PAN CH CH, et al.. Application of improved YOLO V3 in aircraft recognition of remote sensing images[J]. Electronics Optics & Control, 2019, 26(4): 32-36. (in Chinese)
Get Citation
Copy Citation Text
YU Yong-wei, HAN Xin, DU Liu-qing. Target part recognition based Inception-SSD algorithm[J]. Optics and Precision Engineering, 2020, 28(8): 1799
Category:
Received: Nov. 7, 2019
Accepted: --
Published Online: Nov. 2, 2020
The Author Email: Yong-wei YU (weiyy@cqut.edu.cn)