Acta Photonica Sinica, Volume. 51, Issue 10, 1014002(2022)

Applications of Femtosecond Four-wave Mixing in Ultrafast and Ultraintense Laser Technology(Invited)

Peng WANG1... Yaping XUAN1,2, Yilin XU1,2, Xiong SHEN1, Shunlin HUANG1,2, Jun LIU1,2,*, and Ruxin LI12 |Show fewer author(s)
Author Affiliations
  • 1CAS Center for Excellence in Ultra-intense Laser Science,State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China
  • 2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    References(64)

    [1] C N DANSON, C HAEFNER, J BROMAGE et al. Petawatt and exawatt class lasers worldwide. High Power Laser Science and Engineering, 7, e54(2019).

    [2] U EICHMANN, T NUBBEMEYER, H ROTTKE et al. Acceleration of neutral atoms in strong short-pulse laser fields. Nature, 461, 1261-1264(2009).

    [3] W WANG, K FENG, L KE et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature, 595, 516-520(2021).

    [4] R RUFFINI, G VERESHCHAGIN, S S XUE. Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes. Physics Report, 487, 1-140(2010).

    [5] E CARTLIDGE. The light fantastic. Science, 359, 382(2018).

    [6] C RADIER, O CHALUS, M CHARBONNEAU et al. 10 PW peak power femtosecond laser pulses at ELI-NP. High Power Laser Science and Engineering, 10, 25-29(2022).

    [7] W LI, Z GAN, L YU et al. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility. Optics Letters, 43, 5681-5684(2018).

    [8] D STRICKLAND, G MOUROU. Compression of amplified chirped optical pulses. Optics Communications, 56, 219-221(1985).

    [9] A DUBIETIS, G JONUSAUSKAS, A PISKARSKAS. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Optics Communication, 88, 437-440(1992).

    [10] G CERULLO, M NISOLI, S STAGIRA et al. Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible. Optics Letters, 23, 1283-1285(1998).

    [11] G CERULLO, S DE SILVESTRI. Ultrafast optical parametric amplifiers. Review of Scientific Instruments, 74, 1-18(2003).

    [12] S W HUANG, G CIRMI, J MOSES et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics. Nature Photonics, 5, 475-479(2011).

    [13] F D FULLER, J P OGILVIE. Experimental implementations of two-dimensional fourier transform electronic spectroscopy. JOHNSON M A, MARTINEZ T J. Annual Review of Physical Chemistry, 667-690(2015).

    [14] X MA, J DOSTAL, T BRIXNER. Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression. Optics Express, 24, 20781-20791(2016).

    [15] Z ZHANG, A HUERTA-VIGA, H S TAN. Two-dimensional electronic-Raman spectroscopy. Optics Letters, 43, 939-942(2018).

    [16] D POLLI, P ALTOE, O WEINGART et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature, 467, 440-445(2010).

    [17] J LIU, T KOBAYASHI. Cascaded four-wave mixing and multicolored arrays generation in a sapphire plate by using two crossing beams of femtosecond laser. Optics Express, 16, 22119-22125(2008).

    [18] J LIU, T KOBAYASHI. Generation of sub-20-fs multicolor laser pulses using cascaded four-wave mixing with chirped incident pulses. Optics Letters, 34, 2402-2404(2009).

    [19] J LIU, T KOBAYASHI. Generation of mu J multicolor femtosecond laser pulses using cascaded four-wave mixing. Optics Express, 17, 4984-4990(2009).

    [20] J LIU, T KOBAYASHI. Wavelength-tunable, multicolored femtosecond-laser pulse generation in fused-silica glass. Optics Letters, 34, 1066-1068(2009).

    [21] J LIU, T KOBAYASHI, Z WANG. Generation of broadband two-dimensional multicolored arrays in a sapphire plate. Optics Express, 17, 9226-9234(2009).

    [22] P WANG, J LIU, F LI et al. Generation of high-energy tunable multicolored femtosecond sidebands directly after a Ti:sapphire femtosecond laser. Applied Physics Letters, 105, 201901(2014).

    [23] P WANG, J LIU, F LI et al. Multicolored sideband generation based on cascaded four-wave mixing with the assistance of spectral broadening in multiple thin plates. Photonics Research, 3, 210-213(2015).

    [24] P WANG, J LIU, F LI et al. Filamentation assisted generation of tunable multicolored femtosecond sidebands based on cascaded four-wave mixing. Laser Physics, 25, 055401(2015).

    [25] S HUANG, P WANG, X SHEN et al. Multicolor concentric annular ultrafast vector beams. Optics Express, 28, 9435-9444(2020).

    [26] S HUANG, P WANG, X SHEN et al. Multicolor concentric ultrafast vortex beams with controllable orbital angular momentum. Applied Physics Letters, 120, 061102(2022).

    [27] H CRESPO, J T MENDONCA, A DOS SANTOS. Cascaded highly nondegenerate four-wave-mixing phenomenon in transparent isotropic condensed media. Optics Letters, 25, 829-831(2000).

    [28] Y KIDA, J LIU, T TERAMOTO et al. Sub-10 fs deep-ultraviolet pulses generated by chirped-pulse four-wave mixing. Optics Letters, 35, 1807-1809(2010).

    [29] S HUANG, P WANG, X SHEN et al. Broadband ultrashort light generation from a narrowband seed. Optics and Laser Technology, 145, 107489(2022).

    [30] X SHEN, P WANG, J LIU et al. Linear angular dispersion compensation of cleaned self-diffraction light with a single prism. High Power Laser Science and Engineering, 6, e23(2018).

    [31] P WANG, X SHEN, Z ZENG et al. High-performance seed pulses at 910 nm for 100 PW laser facilities by using single-stage nondegenerate four-wave mixing. Optics Letters, 44, 3952-5395(2019).

    [32] L YU, Y XU, Y LIU et al. High-contrast front end based on cascaded XPWG and femtosecond OPA for 10-PW-level Ti:sapphire laser. Optics Express, 26, 2625-2633(2018).

    [33] C DORRER, I A BEGISHEV, A V OKISHEV et al. High-contrast optical-parametric amplifier as a front end of high-power laser systems. Optics Letters, 32, 2143-2145(2007).

    [34] S LUAN, M HUTCHINSON, R SMITH et al. High dynamic range third-order correlation measurement of picosecond laser pulse shapes. Measurement Science and Technology, 4, 1426(1993).

    [35] J MA, P YUAN, X OUYANG et al. Demonstration of single-shot measurements of 1013 ultrahigh-contrast pulses by manipulating cross-correlation. Advanced Photonics Research, 2, 2100105(2021).

    [36] T OKSENHENDLER, P BIZOUARD, O ALBERT et al. High dynamic, high resolution and wide range single shot temporal pulse contrast measurement. Optics Express, 25, 12588-12600(2017).

    [37] P WANG, X SHEN, S HUANG et al. Cross-polarized wave-generation-based single-shot fourth-order autocorrelator. Applied Optics, 60, 5912-5916(2021).

    [38] P WANG, X SHEN, J LIU et al. Single-shot fourth-order autocorrelator. Advanced Photonics, 1, 056001(2019).

    [39] X SHEN, P WANG, J ZHU et al. Temporal contrast reduction techniques for high dynamic-range temporal contrast measurement. Optics Express, 27, 10586-10601(2019).

    [40] W DENK, J H STRICKLER, W W WEBB. Two-photon laser scanning fluorescence microscopy. Science, 248, 73-76(1990).

    [41] P T C SO, C Y DONG, B R MASTERS et al. Two-photon excitation fluorescence microscopy. Annual Review of Biomedical Engineering, 2, 399-429(2000).

    [42] K SVOBODA, R YASUDA. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron, 50, 823-839(2006).

    [43] L LEPETIT, G CHéRIAUX, M JOFFRE. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. Journal of the Optical Society of America B-Optical Physics, 12, 2467-2474(1995).

    [44] D J KANE, R TREBINO. Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating. IEEE J Quantum Electron, 29, 571-579(1993).

    [45] C IACONIS, I A WALMSLEY. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Optics Letters, 23, 792-794(1998).

    [46] J LIU, Y JIANG, T KOBAYASHI et al. Self-referenced spectral interferometry based on self-diffraction effect. Journal of the Optical Society of America B-Optical Physics, 29, 29-34(2012).

    [47] A JULLIEN, O ALBERT, F BURGY et al. 10-10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation. Optics Letters, 30, 920-922(2005).

    [48] A JULLIEN, S KOURTEV, O ALBERT et al. Highly efficient temporal cleaner for femtosecond pulses based on cross-polarized wave generation in a dual crystal scheme. Applied Physics B, 84, 409-414(2006).

    [49] A JULLIEN, L CANOVA, O ALBERT et al. Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase. Applied Physics B, 87, 595-601(2007).

    [50] T OKSENHENDLER, S COUDREAU, N FORGET et al. Self-referenced spectral interferometry. Applied Physics B, 99, 7-12(2010).

    [51] T OKSENHENDLER. Self-referenced spectral interferometry theory, 1-37(2012).

    [52] B XU, J M GUNN, J M D CRUZ et al. Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses. Journal of the Optical Society of America B-Optical Physics, 23, 750-759(2006).

    [53] J LIU, K OKAMURA, Y KIDA et al. Temporal contrast enhancement of femtosecond pulses by a self-diffraction process in a bulk Kerr medium. Optics Express, 18, 22245-22254(2010).

    [54] J LIU, K OKAMURA, Y KIDA et al. Femtosecond pulses cleaning by transient-grating process in Kerr-optical media. Chinese Optics Letters, 9, 051903(2011).

    [55] J LIU, T KOBAYASHI. Generation and amplification of tunable multicolored femtosecond laser pulses by using cascaded four-wave mixing in transparent bulk media. Sensors, 10, 4296-4341(2010).

    [56] A C ECKBRETH. BOXCARS: Crossed‐beam phase‐matched CARS generation in gases. Applied Physics Letters, 32, 421-423(1978).

    [57] R TREBINO. Frequency-resolved optical gating: the measurement of ultrashort laser pulses(2000).

    [58] A TRISORIO, S GRABIELLE, M DIVALL et al. Self-referenced spectral interferometry for ultrashort infrared pulse characterization. Optics Letters, 37, 2892-2884(2012).

    [59] J LIU, F J LI, Y L JIANG et al. Transient-grating self-referenced spectral interferometry for infrared femtosecond pulse characterization. Optics Letters, 37, 4829-4831(2012).

    [60] Z SI, X SHEN, J ZHU et al. All-reflective self-referenced spectral interferometry for single-shot measurement of few-cycle femtosecond pulses in a broadband spectral range. Chinese Optics Letters, 18, 021202(2020).

    [61] X SHEN, J LIU, F LI et al. Extended transient-grating self-referenced spectral interferometry for sub-100 nJ femtosecond pulse characterization. Chinese Optics Letters, 13, 081901(2015).

    [62] X SHEN, P WANG, J LIU et al. Compact transient-grating self-referenced spectral interferometry for sub-nanojoule femtosecond pulse characterization. Applied Optics, 56, 582-586(2017).

    [63] F J LI, S X ZHANG, Q F LIU et al. A new multifunctional device for femtosecond pulse characterization with a wide operating range. Laser Physics Letters, 11, 015302(2014).

    [64] X SHEN, Z SI, J ZHU et al. Broad spectral range few-cycle laser pulses characterization by using a FASI device. Optics & Laser Technology, 137, 106810(2021).

    Tools

    Get Citation

    Copy Citation Text

    Peng WANG, Yaping XUAN, Yilin XU, Xiong SHEN, Shunlin HUANG, Jun LIU, Ruxin LI. Applications of Femtosecond Four-wave Mixing in Ultrafast and Ultraintense Laser Technology(Invited)[J]. Acta Photonica Sinica, 2022, 51(10): 1014002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 29, 2022

    Accepted: Oct. 9, 2022

    Published Online: Nov. 30, 2022

    The Author Email: LIU Jun (jliu@zjlab.ac.cn)

    DOI:10.3788/gzxb20225110.1014002

    Topics