Optics and Precision Engineering, Volume. 24, Issue 4, 902(2016)

Non-convex sparsity regularization for wave back restoration of space object images

GUO Cong-zhou1,2、*, SHI Wen-jun3, QIN ZHi-yuan2, and GENG Ze-xun2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(30)

    [1] [1] RODDIER F. Adaptive Optics in Astronomy [M]. UK: Cambridge University Press, 1999.

    [2] [2] GENG Z X, CHEN B, WANG ZH G, et al.. The Theory and Method About Adaptive Optics Image Restoration [M]. Beijing: Science press, 2010. (in Chinese)

    [3] [3] TIKHONOV A N, ARSENIN U Y. Solution of Ill-Posed Problems [M]. New York: John Wiley & Sons, 1977: 9-21.

    [4] [4] ZHENG H, HELLWICH O. Adaptive data-driven regularization for variational image restoration in the BV space[C]. Proceedings of VISAPP’07, Barcelona, Spain, 2007, 53-60.

    [5] [5] CHEN X J, NG M K, ZHANG C. Non-Lipschitz lp-regularization and box constrained model for image restoration[J]. IEEE Transaction on Image Processing, 2012, 21(12): 4709-4721.

    [6] [6] STAMATIOS L, AURELIEN B, MICHAEL U. Hessian-based norm regularization for image restoration with biomedical applications [J]. IEEE Transactions on Image Processing, 2012, 21(3): 983-996.

    [8] [8] CHAN T F, WONG C K. Total variation blind deconvolution [J]. IEEE Transactions on Image Processing, 1998, 7(3): 370-375.

    [9] [9] LI W, LI Q, GONG W, et al.. Total variation blind deconvolution employing split Bregman iteration[J]. Journal of Visual Communication & Image Representation, 2012, 23(3): 409-417.

    [10] [10] MA SH X, JIANG CH SH. A new method for image blind restoration based on fourth-order PDE[J]. Journal of Image and Graphics, 2010, 15(1): 26-30. (in Chinese)

    [11] [11] LIU K, WANG G Y, JI T T. A method for fourth-order P-Laplace blind image restoration[J]. Periodical of Ocean University of China, 2014, 44(9): 110-115. (in Chinese)

    [12] [12] CHU Y L, LI SH CH, WANG M. Study on non-convex total variation regularization model for restoration of motion blurred image[J]. Computer Engineering and Applications, 2011, 47(35): 171-173. (in Chinese)

    [14] [14] ALMEIDA M, ALMEIDA L. Blind and semi-blind deblurring of natural images[J]. IEEE Trans. Image Processing, 2010, 19(1): 36-52.

    [15] [15] KRISHNAN D, TAY T, FERGUS R. Blind deconvolution using a normalized sparsity measure[C]. Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition IEEE Computer Society, 2011: 233-240.

    [16] [16] KOTERA J, ROUBEK F, MILANFAR P. Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors[J]. Computer Analysis of Images and Patterns, 2013: 59-66.

    [17] [17] SHAO W Z, LI H B, ELAD M. Bi-l0-l2-Norm Regularization for Blind Motion Deblurring[J]. Eprint Arxiv, 2014.

    [18] [18] KRISHNAN D, BRUNA J, FERGUS R. Blind Deconvolution with Re-weighted Sparsity Promotion[J]. Arxiv Preprint Arxiv, 2013.

    [21] [21] ZHANG J J, WANG Q. An iterative conjugate gradient regularization method for image restoration[J]. Journal of Information and Computing Science, 2010, 5(1): 55-62.

    [22] [22] SHI Y, CHANG Q, XU J. Convergence of fixed point iteration for deblurring and denoising problem[J]. Applied Mathematics and Computation, 2007, 189(2): 1178-1185.

    [23] [23] FANG H, YAN L. Multiframe blind image deconvolution with split Bregman method [J]. Optik International Journal for Light and Electron Optics, 2014, 125(1): 446-451.

    [24] [24] WU C L, TAI X C. Augmented lagrangian method, dual methods, and split bregman iteration for ROF, vectorial TV, and high order models [J]. Siam Journal on Imaging Sciences, 2010, 3(3): 300-339.

    [25] [25] HE C, HU C, YANG X, et al.. An adaptive total generalized variation model with augmented lagrangian method for image denoising[J]. Mathematical Problems in Engineering, 2014, 842(2): 805-808.

    [26] [26] HONG M, LUO Z Q. On the linear convergence of the alternating direction method of multipliers[J]. Eprint Arxiv, 2012.

    [27] [27] YANG J, ZHANG Y. Alternating direction algorithms for L1 problems in compressive sensing[J].SIAM Journal on Scientific Computing, 2011, 33(1): 250-278.

    [28] [28] GETREUER P, GETREUER P. Total variation deconvolution using split Bregman[J]. Image Processing on Line, 2012, 2: 158-174.

    [29] [29] KRISHNAN D, FERGUS R. Fast image deconvolution using hyper-laplacian priors[J]. Proceedings of Neural Information Processing Systems Blurred Lut Nr, 2009: 1033-1041.

    [30] [30] KRISHNAN D, TAY T, FERGUS R. Blind deconvolution using a normalized sparsity measure[C].2011 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2011: 233-240.

    CLP Journals

    [1] Chen Yu, Wen Xinling, Liu Zhaoyu, Ma Pengge. Research of multi-missile classification algorithm based on sparse auto-encoder visual feature fusion[J]. Infrared and Laser Engineering, 2018, 47(8): 826004

    Tools

    Get Citation

    Copy Citation Text

    GUO Cong-zhou, SHI Wen-jun, QIN ZHi-yuan, GENG Ze-xun. Non-convex sparsity regularization for wave back restoration of space object images[J]. Optics and Precision Engineering, 2016, 24(4): 902

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 6, 2015

    Accepted: --

    Published Online: Jun. 6, 2016

    The Author Email: Cong-zhou GUO (czguo0618@sina.cn)

    DOI:10.3788/ope.20162404.0902

    Topics