International Journal of Extreme Manufacturing, Volume. 4, Issue 4, 42005(2022)

Mass transfer techniques for large-scale and high-density microLED arrays

[in Chinese]1,2, [in Chinese]1,2,3, [in Chinese]1,2, [in Chinese]1,2, [in Chinese]1,2, [in Chinese]1,2, [in Chinese]1,2, [in Chinese]1,2, [in Chinese]1,2, [in Chinese]1,2, and [in Chinese]1,2、*
Author Affiliations
  • 1State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
  • 2Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
  • 3College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, People’s Republic of China
  • show less
    References(231)

    [1] [1] Meng W Q et al 2021 Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix Nat. Nanotechnol. 16 1231-6

    [2] [2] Jin S X, Li J, Li J Z, Lin J Y and Jiang H X 2000 GaN microdisk light emitting diodes Appl. Phys. Lett. 76 631-3

    [3] [3] Z L L et al 2018 Heterogeneous integration of microscale GaN light-emitting diodes and their electrical, optical, and thermal characteristics on flexible substrates Adv. Mater. Technol. 3 1700239

    [4] [4] Kim T I et al 2012 High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates Small 8 1643-9

    [5] [5] Parbrook P J, Corbett B, Han J, Seong T Y and Amano H 2021 Micro-light emitting diode: from chips to applications Laser Photonics Rev. 15 2000133

    [6] [6] Chen Z, Yan S K and Danesh C 2021 MicroLED technologies and applications: characteristics, fabrication, progress, and challenges J. Appl. Phys. 54 123001

    [7] [7] Lee H E, Shin J H, Park J H, Hong S K, Park S H, Lee S H, Lee J H, Kang I S and Lee K J 2019 Micro light-emitting diodes for display and flexible biomedical applications Adv. Funct. Mater. 29 1808075

    [8] [8] Zhang L, Ou F, Chong W C, Chen Y J, Zhu Y K and Li Q M 2018 31.1: Invited Paper: monochromatic active matrix micro-LED micro-displays with >5000 dpi pixel density fabricated using monolithic hybrid integration process SID Symp. Digest of Technical Papers vol 49 pp 333-6

    [9] [9] Kim J et al 2017 Miniaturized battery-free wireless systems for wearable pulse oximetry Adv. Funct. Mater. 27 1604373

    [10] [10] Lochner C M, Khan Y, Pierre A and Arias A C 2014 All-organic optoelectronic sensor for pulse oximetry Nat. Commun. 5 5745

    [11] [11] Jang T M et al 2020 Expandable and implantable bioelectronic complex for analyzing and regulating real-time activity of the urinary bladder Sci. Adv. 6 eabc9675

    [12] [12] Lee H E et al 2019 Wireless powered wearable micro light-emitting diodes Nano Energy 55 454-62

    [13] [13] Wang L et al 2021 1.3 GHz E-O bandwidth GaN-based micro-LED for multi-gigabit visible light communication Photon. Res. 9 792-802

    [14] [14] Koester R, Sager D, Quitsch W A, Pfingsten O, Poloczek A, Blumenthal S, Keller G, Prost W, Bacher G and Tegude F J 2015 High-speed GaN/GaInN nanowire array light-emitting diode on silicon(111) Nano Lett. 15 2318-23

    [15] [15] Ferreira R X G et al 2016 High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications IEEE Photonics Technol. Lett. 28 2023-6

    [16] [16] Wasisto H S, Prades J D, Gülink J and Waag A 2019 Beyond solid-state lighting: miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs Appl. Phys. Rev. 6 041315

    [17] [17] Mei S L, Liu X Y, Zhang W L, Liu R, Zheng L R, Guo R Q and Tian P F 2018 High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication ACS Appl. Mater. Interfaces 10 5641-8

    [18] [18] Darlis A R, Cahyadi W A and Chung Y H 2018 Shore-to-undersea visible light communication Wirel. Pers. Commun. 99 681-94

    [19] [19] Lin R Z, Liu X Y, Zhou G F, Qian Z Y, Cui X G and Tian P F 2021 InGaN micro-LED array enabled advanced underwater wireless optical communication and underwater charging Adv. Opt. Mater. 9 2002211

    [20] [20] Li L Z et al 2021 Transfer-printed, tandem microscale light-emitting diodes for full-color displays Proc. Natl Acad. Sci. USA 118 e2023436118

    [21] [21] Virey E H, Baron N and Bouhamri Z 2019 11-3: Overlooked challenges for microLED displays SID Symp. Digest of Technical Papers vol 50 pp 129-32

    [22] [22] Wu Y F, Ma J S, Su P, Zhang L J and Xia B Z 2020 Full-color realization of Micro-LED displays Nanomaterials 10 2482

    [23] [23] Fukushima T, Konno T, Iwata E, Kobayashi R, Kojima T, Murugesan M, Bea J C, Lee K W, Tanaka T and Koyanagi M 2011 Self-assembly of chip-size components with cavity structures: high-precision alignment and direct bonding without thermal compression for hetero integration Micromachines 2 49-68

    [24] [24] Liu Z X, Huang Y A, Liu H M, Chen J K and Yin Z P 2014 Reliable peeling of ultrathin die with multineedle ejector IEEE Trans. Compon. Packag. Manuf. Technol. 4 1545-54

    [25] [25] Park S C, Fang J, Biswas S, Mozafari M, Stauden T and Jacobs H O 2014 A first implementation of an automated reel-to-reel fluidic self-assembly machine Adv. Mater. 26 5942-9

    [26] [26] Virey E H and Baron N 2018 45-1: status and prospects of microLED displays SID Symp. Digest of Technical Papers vol 49 pp 593-6

    [27] [27] Liu X Y, Tong C Y, Luo X S, Li W Z and Liu Z J 2019 P-6.8: study of mass transfer for micro-LED manufacturing SID Symp. Digest of Technical Papers vol 50 pp 775-8

    [28] [28] Park S C, Fang J, Biswas S, Mozafari M, Stauden T and Jacobs H O 2014 Self-assembly: a first implementation of an automated reel-to-reel fluidic self-assembly machine Adv. Mater. 26 5890

    [29] [29] Zou Q B and Wang Z 2019 Transferring method, manufacturing method, device and electronic apparatus of micro-LED U.S. Patent No. 10224308B2

    [30] [30] Xu L Z et al 2014 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium Nat. Commun. 5 3329

    [31] [31] Chun H, Gomez A, Quintana C, Zhang W D, Faulkner G and O’Brien D 2019 A wide-area coverage 35 Gb/s visible light communications link for indoor wireless applications Sci. Rep. 9 4952

    [32] [32] Huang M X, Guan W P, Fan Z B, Chen Z H, Li J Y and Chen B D 2018 Improved target signal source tracking and extraction method based on outdoor visible light communication using a cam-shift algorithm and Kalman filter Sensors 18 4173

    [33] [33] Meitl M A, Zhu Z T, Kumar V, Lee K J, Feng X, Huang Y Y, Adesida I, Nuzzo R G and Rogers J A 2006 Transfer printing by kinetic control of adhesion to an elastomeric stamp Nat. Mater. 5 33-38

    [34] [34] Carlson A, Bowen A M, Huang Y G, Nuzzo R G and Rogers J A 2012 Transfer printing techniques for materials assembly and micro/nanodevice fabrication Adv. Mater. 24 5284-318

    [35] [35] Kaltwasser M, Schmidt U, Biswas S, Reiprich J, Schlag L, Isaac N A, Stauden T and Jacobs H O 2018 Core-shell transformation-imprinted solder bumps enabling low-temperature fluidic self-assembly and self-alignment of chips and high melting point interconnects ACS Appl. Mater. Interfaces 10 40608-13

    [36] [36] Biedermann L B, Beechem T E, Ross A J, Ohta T and Howell S W 2010 Electrostatic transfer of patterned epitaxial graphene from SiC(0001) to glass New J. Phys. 12 125016

    [37] [37] Kim S et al 2019 Soft nanocomposite electroadhesives for digital micro- and nanotransfer printing Sci. Adv. 5 eaax4790

    [38] [38] Um J G, Jeong D Y, Jung Y, Moon J K, Jung Y H, Kim S, Kim S H, Lee J S and Jang J 2019 Active-matrix GaN μ-LED display using oxide thin-film transistor backplane and flip chip LED bonding Adv. Electron. Mater. 5 1800617

    [39] [39] Bian J, Zhou L B Y, Wan X D, Zhu C, Yang B and Huang Y A 2019 Laser transfer, printing, and assembly techniques for flexible electronics Adv. Electron. Mater. 5 1800900

    [40] [40] Kim J Y, Cho Y H, Park H S, Ryou J H and Kwon M K 2019 Mass transfer of microscale light-emitting diodes to unusual substrates by spontaneously formed vertical tethers during chemical lift-off Appl. Sci. 9 4243

    [41] [41] Yoon J et al 2010 GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies Nature 465 329-33

    [42] [42] Cok R S et al 2017 Inorganic light-emitting diode displays using micro-transfer printing J. Soc. Inf. Dis. 25 589-609

    [43] [43] Bower C A et al 2020 High-brightness displays made with micro-transfer printed flip-chip microLEDs Proc. IEEE 70th Electronic Components and Technology Conf. (Orlando, FL: IEEE)

    [44] [44] Gomez D et al 2019 Manufacturing capability of micro-transfer printing Proc. 13th Int. Conf. and Exhibition on Integration Issues of Miniaturized Systems (Barcelona: IEEE) pp 1-4

    [45] [45] Gomez D, Ghosal K, Moore T, Meitl M A, Bonafede S, Prevatte C, Radauscher E, Trindade A J and Bower C A 2017 Scalability and yield in elastomer stamp micro-transfer-printing Proc. 67th Electronic Components and Technology Conf. (Orlando, FL: IEEE)

    [46] [46] Marinov V R 2018 Laser-enabled extremely-high rate technology for μLED assembly SID Symp. Digest of Technical Papers vol 49 pp 692-5

    [47] [47] Wierer J J J and Tansu N 2019 III-nitride micro-LEDs for efficient emissive displays Laser Photonics Rev. 13 1900141

    [48] [48] Zhou X J, Tian P F, Sher C W, Wu J, Liu H Z, Liu R and Kuo H C 2020 Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display Prog. Quantum Electron. 71 100263

    [49] [49] Huang Y G, Hsiang E L, Deng M Y and Wu S T 2020 Mini-LED, Micro-LED and OLED displays: present status and future perspectives Light Sci. Appl. 9 105

    [50] [50] Ho S J, Hsu H C, Yeh C W and Chen H S 2020 Inkjet-printed salt-encapsulated quantum dot film for UV-based RGB color-converted micro-light emitting diode displays ACS Appl. Mater. Interfaces 12 33346-51

    [51] [51] Templier F and Bernard J 2019 18-3: a new approach for fabricating high-performance microLED displays SID Symp. Digest of Technical Papers vol 50 pp 240-3

    [52] [52] Lee B J and Khang D Y 2021 Non-deterministic transfer-printing of LED chips with controllable pitch using stretchable elastomeric stamps Extreme Mech. Lett. 45 101287

    [53] [53] Colvin V L, Schlamp M C and Alivisatos A P 1994 Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer Nature 370 354-7

    [54] [54] Shirasaki Y, Supran G J, Bawendi M G and Bulovic V 2013 Emergence of colloidal quantum-dot light-emitting technologies Nat. Photon. 7 13-23

    [55] [55] Han H V et al 2015 Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology Opt. Express 23 32504-15

    [56] [56] Pust P, Weiler V, Hecht C, Tücks A, Wochnik A S, Henb A K, Wiechert D, Scheu C, Schmidt P J and Schnick W 2014 Narrow-band red-emitting Sr [LiAl3N4]:Eu2+ as a next-generation LED-phosphor material Nat. Mater. 13 891-6

    [57] [57] Liu Y T, Lai Y H and Li Y L 2019 23.1: Invited Paper: heading to ultimate display with MicroLED SID Symp. Digest of Technical Papers vol 50 p 220

    [58] [58] Jung T, Choi J H, Jang S H and Han S J 2019 32-1: Invited Paper: review of micro-light-emitting-diode technology for micro-display applications SID Symp. Digest of Technical Papers vol 50 pp 442-6

    [59] [59] Horng R H, Chien H Y, Tarntair F G and Wuu D S 2018 Fabrication and study on red light micro-LED displays IEEE J. Electron Devices Soc. 6 1064-9

    [60] [60] Li Z, Waldron J, Detchprohm T, Wetzel C, Karlicek R F Jr and Chow T P 2013 Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate Appl. Phys. Lett. 102 192107

    [61] [61] Kang C M, Kong D J, Shim J P, Kim S, Choi S B, Lee J Y, Min J H, Seo D J, Choi S Y and Lee D S 2017 Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display Opt. Express 25 2489-95

    [62] [62] Sun C W, Chao C H, Chen H Y, Chiu Y H, Yeh W Y, Wu M H, Yen H H and Liang C C 2011 71-1: Development of micro-pixellated GaN LED array micro-display system SID Symp. Digest of Technical Papers vol 42 pp 1042-5

    [63] [63] Ra Y H, Wang R J, Woo S Y, Djavid M, Sadaf S M, Lee J, Botton G A and Mi Z T 2016 Full-color single nanowire pixels for projection displays Nano Lett. 16 4608-15

    [64] [64] Choi M K, Yang J, Hyeon T and Kim D H 2018 Flexible quantum dot light-emitting diodes for next-generation displays npj Flex. Electron. 2 10

    [65] [65] Supran G J, Song K W, Hwang G W, Correa R E, Scherer J, Dauler E A, Shirasaki Y, Bawendi M G and Bulovic V 2015 High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots Adv. Mater. 27 1437-42

    [66] [66] Liu Z J et al 2020 Micro-light-emitting diodes with quantum dots in display technology Light Sci. Appl. 9 83

    [67] [67] Cheng C W, Shiu K T, Li N, Han S J, Shi L and Sadana D K 2013 Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics Nat. Commun. 4 1577

    [68] [68] Liu Y, Huang Y and Duan X F 2019 Van der Waals integration before and beyond two-dimensional materials Nature 567 323-33

    [69] [69] Yulianto N, Kadja G T M, Bornemann S, Gahlawat S, Majid N, Triyana K, Abdi F F, Wasisto H S and Waag A 2021 Ultrashort pulse laser lift-off processing of InGaN/GaN light-emitting diode chips ACS Appl. Electron. Mater. 3 778-88

    [70] [70] Peng Y Y et al 2019 Achieving high-resolution pressure mapping via flexible GaN/ZnO nanowire LEDs array by piezo-phototronic effect Nano Energy 58 633-40

    [71] [71] Sheng X et al 2014 Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules Nat. Mater. 13 593-8

    [72] [72] Xu H H, Yin L, Liu C, Sheng X and Zhao N 2018 Recent advances in biointegrated optoelectronic devices Adv. Mater. 30 1800156

    [73] [73] Ueda T, Ishida M and Yuri M 2011 Separation of thin GaN from sapphire by laser lift-off technique Jpn. J. Appl. Phys. 50 041001

    [74] [74] Zhang Y, Sun Q, Leung B, Simon J, Lee M L and Han J 2011 The fabrication of large-area, free-standing GaN by a novel nanoetching process Nanotechnology 22 045603

    [75] [75] Lin C F, Dai J J, Lin M S, Chen K T, Huang W C, Lin C M, Jiang R H and Huang Y C 2010 An AlN sacrificial buffer layer inserted into the GaN/patterned sapphire substrate for a chemical lift-off process Appl. Phys. Express 3 031001

    [76] [76] Feng X, Cheng H Y, Bowen A M, Carlson A W, Nuzzo R G and Rogers J A 2013 A finite-deformation mechanics theory for kinetically controlled transfer printing J. Appl. Mech. 80 061023

    [77] [77] Zhou H L, Qin W Y, Yu Q M, Cheng H Y, Yu X D and Wu H P 2019 Transfer printing and its applications in flexible electronic devices Nanomaterials 9 283

    [78] [78] Li H C, Wang Z H, Cao Y, Chen Y and Feng X 2021 High-efficiency transfer printing using droplet stamps for robust hybrid integration of flexible devices ACS Appl. Mater. Interfaces 13 1612-9

    [79] [79] Liu X, Cao Y, Zheng K W, Zhang Y C, Wang Z H, Chen Y H, Chen Y, Ma Y J and Feng X 2021 Liquid droplet stamp transfer printing Adv. Funct. Mater. 31 2105407

    [80] [80] Biswas S, Mozafari M, Stauden T and Jacobs H O 2016 Surface tension directed fluidic self-assembly of semiconductor chips across length scales and material boundaries Micromachines 7 54

    [81] [81] Bartlett M D, Croll A B, King D R, Paret B M, Irschick D J and Crosby A J 2012 Looking beyond fibrillar features to scale gecko-like adhesion Adv. Mater. 24 1078-83

    [82] [82] Cheng H, Li M, Wu J, Carlson A, Kim S, Huang Y, Kang Z, Hwang K C and Rogers J A 2013 A viscoelastic model for the rate effect in transfer printing J. Appl. Mech. 80 041019

    [83] [83] Zhang H and Rogers J A 2019 Recent advances in flexible inorganic light emitting diodes: from materials design to integrated optoelectronic platforms Adv. Opt. Mater. 7 1800936

    [84] [84] Konagai M, Sugimoto M and Takahashi K 1978 High efficiency GaAs thin film solar cells by peeled film technology J. Cryst. Growth 45 277-80

    [85] [85] Wong W S, Sands T, Cheung N W, Kneissl M, Bour D P, Mei P, Romano L T and Johnson N M 1999 Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off Appl. Phys. Lett. 75 1360-2

    [86] [86] Koma A 1992 Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system Thin Solid Films 216 72-76

    [87] [87] Jeong J et al 2021 Transferable, flexible white light-emitting diodes of GaN p-n junction microcrystals fabricated by remote epitaxy Nano Energy 86 106075

    [88] [88] Dean C R et al 2010 Boron nitride substrates for high-quality graphene electronics Nat. Nanotechnol. 5 722-6

    [89] [89] Fan S D, Vu Q A, Tran M D, Adhikari S and Lee Y H 2020 Transfer assembly for two-dimensional van der Waals heterostructures 2D Mater. 7 022005

    [90] [90] Cheung Y F, Li K H and Choi H W 2016 Flexible free-standing III-nitride thin films for emitters and displays ACS Appl. Mater. Interfaces 8 21440-5

    [91] [91] Delmdahl R and Fechner B 2010 Large-area microprocessing with excimer lasers Appl. Phys. A 101 283-6

    [92] [92] Delmdahl R, Patzel R, Brune J, Senczuk R, Gobler C, Moser R, Kunzer M and Schwarz U T 2012 Line beam processing for laser lift-off of GaN from sapphire Phys. Status Solidi a 209 2653-8

    [93] [93] Kim J, Kim J H, Cho S H and Whang K H 2016 Selective lift-off of GaN light-emitting diode from a sapphire substrate using 266-nm diode-pumped solid-state laser irradiation Appl. Phys. A 122 305

    [94] [94] Krause S, Miclea P T and Seifert G 2015 Selective femtosecond laser lift-off process for scribing in thin-film photovoltaics J. Laser Micro Nanoeng. 10 274-8

    [95] [95] Kim S et al 2010 Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing Proc. Natl Acad. Sci. USA 107 17095-100

    [96] [96] Bibl A, Higginson J A, Law H F S and Hu H H 2013 Micro device transfer head heater assembly and method of transferring a micro device U.S. Patent No. 8, 349, 116

    [97] [97] Sakariya K V, Bibl A and Hu H H 2015 Active matrix display panel with ground tie lines U.S. Patent No. 20150179703

    [98] [98] Li R, Li Y H, Lü C F, Song J Z, Saeidpouraza R, Fang B, Zhong Y, Ferreira P M, Rogers J A and Huang Y G 2012 Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis Soft Matter 8 7122-7

    [99] [99] Saeidpourazar R, Sangid M D, Rogers J A and Ferreira P M 2012 A prototype printer for laser driven micro-transfer printing J. Manuf. Process. 14 416-24

    [100] [100] Miller R, Marinov V, Swenson O, Chen Z G and Semler M 2012 Noncontact selective laser-assisted placement of thinned semiconductor dice IEEE Trans. Compon. Packag. Manuf. Technol. 2 971-8

    [101] [101] Chang T C, Tsao Y C, Chen P H, Tai M C, Huang S P, Su W C and Chen G F 2020 Flexible low-temperature polycrystalline silicon thin-film transistors Mater. Today Adv. 5 100040

    [102] [102] Park S C, Fang J, Biswas S, Mozafari M, Stauden T and Jacobs H O 2015 Approaching roll-to-roll fluidic self-assembly: relevant parameters, machine design, and applications J. Microelectromech. Syst. 24 1928-37

    [103] [103] Saeedi E, Kim S and Parviz B A 2008 Self-assembled crystalline semiconductor optoelectronics on glass and plastic J. Micromech. Microeng. 18 075019

    [104] [104] Sasaki K, Schuele P J, Ulmer K and Lee J J 2017 System and method for the fluidic assembly of emissive displays U.S. Patent No. 20170133558

    [105] [105] Cho S, Lee D and Kwon S 2019 Fluidic self-assembly transfer technology for micro-LED display Proc. 20th Int. Conf. on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (Berlin: IEEE) pp 402-4

    [106] [106] Feng X, Meitl M A, Bowen A M, Huang Y G, Nuzzo R G and Rogers J A 2007 Competing fracture in kinetically controlled transfer printing Langmuir 23 12555-60

    [107] [107] Stauth S A and Parviz B A 2006 Self-assembled single-crystal silicon circuits on plastic Proc. Natl Acad. Sci. USA 103 13922-7

    [108] [108] Marinov V R, Swenson O, Atanasov Y and Schneck N 2013 Laser-assisted ultrathin die packaging: insights from a process study Microelectron. Eng. 101 23-30

    [109] [109] Choi M, Jang B, Lee W, Lee S, Kim T W, Lee H J, Kim J H and Ahn J H 2017 Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing Adv. Funct. Mater. 27 1606005

    [110] [110] Wang C J et al 2020 Programmable and scalable transfer printing with high reliability and efficiency for flexible inorganic electronics Sci. Adv. 6 eabb2393

    [111] [111] Jiang H X, Jin S X, Li J, Shakya J and Lin J Y 2001 III-nitride blue microdisplays Appl. Phys. Lett. 78 1303-5

    [112] [112] Park S I et al 2009 Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays Science 325 977-81

    [113] [113] Lin J Y and Jiang H X 2020 Development of microLED Appl. Phys. Lett. 116 100502

    [114] [114] Ozden I, Diagne M, Nurmikko A V, Han J and Takeuchi T 2001 A matrix addressable 1024 element blue light emitting InGaN QW diode array Phys. Status Solidi a 188 139-42

    [115] [115] Chong W C, Cho W K, Liu Z J, Wang C H and Lau K M 2014 1700 pixels per inch (PPI) passive-matrix micro-LED display powered by ASIC Proc. 2014 IEEE Compound Semiconductor Integrated Circuit Symp. (La Jolla, CA: IEEE) pp 1-4

    [116] [116] Fan J, Lee C Y, Chen S J, Gang L M, Jun Z L, Yang S, Cai L M, Fei X H and Nian L 2019 30.2: Invited Paper: a RGB chip full color active matrix micro-LEDs transparent display with IGZO TFT backplane SID Symp. Digest of Technical Papers 50 326-8

    [117] [117] Delmdahl R, Patzel R and Brune J 2013 Large-area laser-lift-off processing in microelectronics Phys. Proc. 41 241-8

    [118] [118] Huang Y A et al 2021 Programmable robotized ‘transfer-and-jet’ printing for large, 3D curved electronics on complex surfaces Int. J. Extremes Manuf. 3 045101

    [119] [119] Kelly M K, Ambacher O, Dimitrov R, Handschuh R and Stutzmann M 1997 Optical process for liftoff of group III-nitride films Phys. Status Solidi a 159 R3-R4

    [120] [120] Xu J, Zhang R, Gu S L, Xiu X Q, Shen B, Shi Y, Liu Z G and Zheng Y D 2001 Study of the laser lift-off technology of GaN films from sapphire substrates Proc. 6th Int. Conf. on Solid-State and Integrated Circuit Technology (Shanghai, China: IEEE) pp 1179-82

    [121] [121] Wang X T et al 2012 193 nm excimer laser lift-off for AlGaN/GaN high electron mobility transistors J. Vac. Sci. Technol. B 30 051209

    [122] [122] Kelly M K, Ambacher O, Dahlheimer B, Groos G, Dimitrov R, Angerer H and Stutzmann M 1996 Optical patterning of GaN films Appl. Phys. Lett. 69 1749-51

    [123] [123] Hayes G J and Clemens B M 2015 Laser liftoff of gallium arsenide thin films MRS Commun. 5 1-5

    [124] [124] Tavernier P R and Clarke D R 2001 Mechanics of laser-assisted debonding of films J. Appl. Phys. 89 1527-36

    [125] [125] Wang M Q, Wang Y, Sun Y J, Zhang G Y, Tong Y Z and Duan H L 2012 Thermo-mechanical solution of film/substrate systems under local thermal load and application to laser lift-off of GaN/sapphire structures Int. J. Solids Struct. 49 1701-11

    [126] [126] Rethfeld B, Ivanov D S, Garcia M E and Anisimov S I 2017 Modelling ultrafast laser ablation J. Phys. D: Appl. Phys. 50 193001

    [127] [127] Yulianto N et al 2021 Wafer-scale transfer route for top-down III-nitride nanowire LED arrays based on the femtosecond laser lift-off technique Microsyst. Nanoeng. 7 32

    [128] [128] Bornemann S, Yulianto N, Spende H, Herbani Y, Prades J D, Wasisto H S and Waag A 2020 Femtosecond laser lift-off with sub-bandgap excitation for production of free-standing GaN light-emitting diode chips Adv. Eng. Mater. 22 1901192

    [129] [129] Ueda T, Ishida M and Yuri M 2003 Laser lift-off of very thin AlGaN film from sapphire using selective decomposition of GaN interlayer Appl. Surf. Sci. 216 512-8

    [130] [130] Bornemann S, Yulianto N, Meyer T, Gülink J, Margenfeld C, Seibt M, Wasisto H S and Waag A 2018 Structural modifications in free-standing InGaN/GaN LEDs after femtosecond laser lift-off Multidiscip. Digit. Publ. Inst. Proc. 2 897

    [131] [131] Lee K, Zimmerman J D, Xiao X, Sun K and Forrest S R 2012 Reuse of GaAs substrates for epitaxial lift-off by employing protection layers J. Appl. Phys. 111 033527

    [132] [132] Kim R H, Kim S, Song Y M, Jeong H, Kim T I, Lee J, Li X L, Choquette K D and Rogers J A 2012 Flexible vertical light emitting diodes Small 8 3123-8

    [133] [133] Lee H J et al 2009 Hydride vapor phase epitaxy of GaN on the vicinal c-sapphire with a CrN interlayer J. Cryst. Growth 311 470-3

    [134] [134] Ha J S, Lee S W, Lee H J, Lee H J, Lee S H, Goto H, Kato T, Fujii K, Cho M W and Yao T 2008 The fabrication of vertical light-emitting diodes using chemical lift-off process IEEE Photonics Technol. Lett. 20 175-7

    [135] [135] Meyer D J, Downey B P, Katzer D S, Nepal N, Wheeler V D, Hardy M T, Anderson T J and Storm D F 2016 Epitaxial lift-off and transfer of III-N materials and devices from SiC substrates IEEE Trans. Semicond. Manuf. 29 384-9

    [136] [136] Rajan A et al 2016 Wafer-scale epitaxial lift-off of optoelectronic grade GaN from a GaN substrate using a sacrificial ZnO interlayer J. Phys. D: Appl. Phys. 49 315105

    [137] [137] Rogers D J et al 2007 Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN Appl. Phys. Lett. 91 071120

    [138] [138] Wu F L, Ou S L, Kao Y C, Chen C L, Tseng M C, Lu F C, Lin M T and Horng R H 2015 Thin-film vertical-type AlGaInP LEDs fabricated by epitaxial lift-off process via the patterned design of Cu substrate Opt. Express 23 18156-65

    [139] [139] Hsueh H H, Ou S L, Wuu D S and Horng R H 2015 InGaN LED fabricated on Eco-GaN template with a Ga2O3 sacrificial layer for chemical lift-off application Vacuum 118 8-12

    [140] [140] Kim H S et al 2011 Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting Proc. Natl Acad. Sci. USA 108 10072-7

    [141] [141] Lin M S, Lin C F, Huang W C, Wang G M, Shieh B C, Dai J J, Chang S Y, Wuu D S, Liu P L and Horng R H 2011 Chemical-mechanical lift-off process for InGaN epitaxial layers Appl. Phys. Express 4 062101

    [142] [142] Dorsaz J, Bühlmann H J, Carlin J F, Grandjean N and Ilegems M 2005 Selective oxidation of AlInN layers for current confinement in III-nitride devices Appl. Phys. Lett. 87 072102

    [143] [143] Wu F L, Ou S L, Horng R H and Kao Y C 2014 Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications Solar Energy Mater. Solar Cells 122 233-40

    [144] [144] Kum H, Lee D, Kong W, Kim H, Park Y, Kim Y, Baek Y, Bae S H, Lee K and Kim J 2019 Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices Nat. Electron. 2 439-50

    [145] [145] Chuang S H, Pan C T, Shen K C, Ou S L, Wuu D S and Horng R H 2013 Thin film GaN LEDs using a patterned oxide sacrificial layer by chemical lift-off process IEEE Photonics Technol. Lett. 25 2435-8

    [146] [146] Chen L C, Wang C K, Huang J B and Hong L S 2009 A nanoporous AlN layer patterned by anodic aluminum oxide and its application as a buffer layer in a GaN-based light-emitting diode Nanotechnology 20 085303

    [147] [147] Anderson R, Cohen D, Mehari S, Nakamura S and DenBaars S 2019 Electrical injection of a 440nm InGaN laser with lateral confinement by nanoporous-GaN Opt. Express 27 22764-9

    [148] [148] Lin C F, Lee W C, Chen Y L, Tseng Y H, Dai J J and Han J 2014 Current confinement effect of InGaN devices by forming photoelectrochemical-oxidized GaN nanoporous structures ECS Trans. 61 251-5

    [149] [149] Li T T et al 2021 Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire Nat. Nanotechnol. 16 1201-7

    [150] [150] Akamatsu T et al 2021 A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect Science 372 68-72

    [151] [151] Makimoto T, Kumakura K, Kobayashi Y, Akasaka T and Yamamoto H 2012 A vertical InGaN/GaN light-emitting diode fabricated on a flexible substrate by a mechanical transfer method using BN Appl. Phys. Express 5 072102

    [152] [152] Kobayashi Y, Kumakura K, Akasaka T and Makimoto T 2012 Layered boron nitride as a release layer for mechanical transfer of GaN-based devices Nature 484 223-7

    [153] [153] Qi Y et al 2018 Fast growth of strain-free AlN on graphene-buffered sapphire J. Am. Chem. Soc. 140 11935-41

    [154] [154] Leszczynski M et al 1996 Lattice parameters of gallium nitride Appl. Phys. Lett. 69 73-75

    [155] [155] Yu J D, Hao Z B, Wang L, Luo Y, Wang J, Sun C Z, Han Y J, Xiong B and Li H T 2021 First-principle calculations of adsorption of Ga (Al, N) adatoms on the graphene for the van-der-Waals epitaxy Mater. Today Commun. 26 101571

    [156] [156] Vuong P et al 2020 Control of the mechanical adhesion of III-V materials grown on layered h-BN ACS Appl. Mater. Interfaces 12 55460-6

    [157] [157] Kendall K 1975 Thin-film peeling-the elastic term J. Phys. D: Appl. Phys. 8 1449-52

    [158] [158] Chen Z L et al 2018 High-brightness blue light-emitting diodes enabled by a directly grown graphene buffer layer Adv. Mater. 30 1801608

    [159] [159] Chang H L et al 2019 Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate Appl. Phys. Lett. 114 091107

    [160] [160] Wang G X, Yang D Z, Zhang Z Y, Si M S, Xue D S, He H Y and Pandey R 2014 Decoding the mechanism of the mechanical transfer of a GaN-based heterostructure via an h-BN release layer in a device configuration Appl. Phys. Lett. 105 121605

    [161] [161] Wei Z X, Lin K, Wang X H and Zhao Y P 2021 Peeling of graphene/molybdenum disulfide heterostructure at different angles: a continuum model with accommodations for van der Waals interaction Composites A 150 106592

    [162] [162] Kim-Lee H J, Carlson A, Grierson D S, Rogers J A and Turner K T 2014 Interface mechanics of adhesiveless microtransfer printing processes J. Appl. Phys. 115 143513

    [163] [163] Luo A Y and Turner K T 2020 Mechanics of crack path selection in microtransfer printing: challenges and opportunities for process control J. Mech. Phys. Solids 143 104066

    [164] [164] Yoon J, Lee S M, Kang D, Meitl M A, Bower C A and Rogers J A 2015 Heterogeneously integrated optoelectronic devices enabled by micro-transfer printing Adv. Opt. Mater. 3 1313-35

    [165] [165] Wu W, Hu M, Ou F S, Li Z Y and Williams R S 2010 Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy Nanotechnology 21 255502

    [166] [166] Igaku Y, Matsui S, Ishigaki H, Fujita J I, Ishida M, Ochiai Y, Namatsu H, Komuro M and Hiroshima H 2002 Room temperature nanoimprint technology using hydrogen silsequioxane (HSQ) Jpn. J. Appl. Phys. 41 4198-202

    [167] [167] Bhingardive V, Menahem L and Schvartzman M 2018 Soft thermal nanoimprint lithography using a nanocomposite mold Nano Res. 11 2705-14

    [168] [168] Fang Y, Yong J, Chen F, Huo J L, Yang Q, Zhang J Z and Hou X 2018 Bioinspired fabrication of Bi/tridirectionally anisotropic sliding superhydrophobic PDMS surfaces by femtosecond laser Adv. Mater. Interfaces 5 1701245

    [169] [169] Li M J, Yang Q, Chen F, Yong J L, Bian H, Wei Y, Fang Y and Hou X 2019 Integration of great water repellence and imaging performance on a superhydrophobic PDMS microlens array by femtosecond laser microfabrication Adv. Eng. Mater. 21 1800994

    [170] [170] Huang Y Y, Paloczi G T, Scheuer J and Yariv A 2003 Soft lithography replication of polymeric microring optical resonators Opt. Express 11 2452-8

    [171] [171] Hassanin H, Mohammadkhani A and Jiang K 2012 Fabrication of hybrid nanostructured arrays using a PDMS/PDMS replication process Lab Chip 12 4160-7

    [172] [172] Sameoto D and Menon C 2009 Direct molding of dry adhesives with anisotropic peel strength using an offset lift-off photoresist mold J. Micromech. Microeng. 19 115026

    [173] [173] Jin K, Cremaldi J C, Erickson J S, Tian Y, Israelachvili J N and Pesika N S 2014 Biomimetic bidirectional switchable adhesive inspired by the gecko Adv. Funct. Mater. 24 574-9

    [174] [174] Tan D, Zheng Y J and Xue L J 2017 The role of effective elastic modulus in the performance of structured adhesives Bio-Inspired Structured Adhesives ed L Heepe, L J Xue and S N Gorb (Cham: Springer) pp 107-39

    [175] [175] Tian Y, Pesika N, Zeng H B, Rosenberg K, Zhao B X, Mcguiggan P, Autumn K and Israelachvili J 2006 Adhesion and friction in gecko toe attachment and detachment Proc. Natl Acad. Sci. USA 103 19320-5

    [176] [176] Hansen W R and Autumn K 2005 Evidence for self-cleaning in gecko setae Proc. Natl Acad. Sci. USA 102 385-9

    [177] [177] Zhou W, Huang Y, Menard E, Aluru N R, Rogers J A and Alleyne A G 2005 Mechanism for stamp collapse in soft lithography Appl. Phys. Lett. 87 251925

    [178] [178] Lakshminarayanan S 2018 Micro/nano patterning on polymers using soft lithography technique Micro/Nanolithography: A Heuristic Aspect on the Enduring Technology ed J Thirumalai (London: IntechOpen) p 69

    [179] [179] Yang S Y et al 2012 Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications Adv. Mater. 24 2117-22

    [180] [180] Cho S, Kim N, Song K and Lee J 2016 Adhesiveless transfer printing of ultrathin microscale semiconductor materials by controlling the bending radius of an elastomeric stamp Langmuir 32 7951-7

    [181] [181] Carlson A, Wang S D, Elvikis P, Ferreira P M, Huang Y G and Rogers J A 2012 Active, programmable elastomeric surfaces with tunable adhesion for deterministic assembly by transfer printing Adv. Funct. Mater. 22 4476-84

    [182] [182] Zhang W Q, Zhang L, Liao Y B and Cheng H Y 2021 Conformal manufacturing of soft deformable sensors on the curved surface Int. J. Extremes Manuf. 3 042001

    [183] [183] Huang Y A, Wu H, Xiao L, Duan Y Q, Zhu H, Bian J, Ye D and Yin Z P 2019 Assembly and applications of 3D conformal electronics on curvilinear surfaces Mater. Horiz. 6 642-83

    [184] [184] Huang Y, Zheng N, Cheng Z Q, Chen Y, Lu B W, Xie T and Feng X 2016 Direct laser writing-based programmable transfer printing via bioinspired shape memory reversible adhesive ACS Appl. Mater. Interfaces 8 35628-33

    [185] [185] Seo J, Eisenhaure J and Kim S 2016 Micro-wedge array surface of a shape memory polymer as a reversible dry adhesive Extreme Mech. Lett. 9 207-14

    [186] [186] Zhang S, Luo H Y, Wang S H, Chen Z, Nie S, Liu C Y and Song J Z 2021 A thermal actuated switchable dry adhesive with high reversibility for transfer printing Int. J. Extremes Manuf. 3 035103

    [187] [187] Cheng H Y, Wu J, Yu Q M, Kim-Lee H J, Carlson A, Turner K T, Hwang K C, Huang Y G and Rogers J A 2012 An analytical model for shear-enhanced adhesiveless transfer printing Mech. Res. Commun. 43 46-49

    [188] [188] Linghu C H, Zhang S, Wang C J, Yu K X, Li C L, Zeng Y J, Zhu H D, Jin X H, You Z Y and Song J Z 2020 Universal SMP gripper with massive and selective capabilities for multiscaled, arbitrarily shaped objects Sci. Adv. 6 eaay5120

    [189] [189] Xue Y G, Zhang Y H, Feng X, Kim S, Rogers J A and Huang Y G 2015 A theoretical model of reversible adhesion in shape memory surface relief structures and its application in transfer printing J. Mech. Phys. Solids 77 27-42

    [190] [190] Linghu C H, Zhang S, Wang C J and Song J Z 2018 Transfer printing techniques for flexible and stretchable inorganic electronics npj Flex. Electron. 2 26

    [191] [191] Xia Y L, He Y, Zhang F H, Liu Y J and Leng J S 2021 A review of shape memory polymers and composites: mechanisms, materials, and applications Adv. Mater. 33 2000713

    [192] [192] Eisenhaure J and Kim S 2016 Laser-driven shape memory effect for transfer printing combining parallelism with individual object control Adv. Mater. Technol. 1 1600098

    [193] [193] Wu M H, Fang Y H and Chao C H 2017. Electric-programmable magnetic module and picking-up and placement process for electronic devices U.S. Patent No. 9607907

    [194] [194] Chen L Y and Lee H W 2017 Method for transferring semiconductor structure U.S. Patent No. 9, 722, 134

    [195] [195] De Volder M, Park S, Tawfick S and Hart A J 2014 Strain-engineered manufacturing of freeform carbon nanotube microstructures Nat. Commun. 5 4512

    [196] [196] Ahmad S, Copic D, George C and De Volder M 2016 Hierarchical assemblies of carbon nanotubes for ultraflexible li-ion batteries Adv. Mater. 28 6705-10

    [197] [197] Lee D H, Shin D O, Lee W J and Kim S O 2008 Hierarchically organized carbon nanotube arrays from self-assembled block copolymer nanotemplates Adv. Mater. 20 2480-5

    [198] [198] Shaw-Stewart J R H, Lippert T K, Nagel M, Nu ¨esch F A and Wokaun A 2012 Sequential printing by laser-induced forward transfer to fabricate a polymer light-emitting diode pixel ACS Appl. Mater. Interfaces 4 3535-41

    [199] [199] Serra P and Piqué A 2019 Laser-induced forward transfer: fundamentals and applications Adv. Mater. Technol. 4 1800099

    [200] [200] Ehsani H, Boyd J D, Wang J L and Grady M E 2021 Evolution of the laser-induced spallation technique in film adhesion measurement Appl. Mech. Rev. 73 030802

    [201] [201] Nakata Y, Hayashi E, Tsubakimoto K, Miyanaga N, Narazaki A, Shoji T and Tsuboi Y 2020 Nanodot array deposition via single shot laser interference pattern using laser-induced forward transfer Int. J. Extremes Manuf. 2 025101

    [202] [202] Shaw Stewart J, Lippert T, Nagel M, Nüesch F and Wokaun A 2012 Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer Appl. Phys. Lett. 100 203303

    [203] [203] Banks D P, Kaur K, Gazia R, Fardel R, Nagel M, Lippert T and Eason R W 2008 Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate EPL 83 38003

    [204] [204] Shaw-Stewart J, Lippert T, Nagel M, Nüesch F and Wokaun A 2012 A simple model for flyer velocity from laser-induced forward transfer with a dynamic release layer Appl. Surf. Sci. 258 9309-13

    [205] [205] Mattle T, Shaw-Stewart J, Schneider C W, Lippert T and Wokaun A 2012 Laser induced forward transfer aluminum layers: process investigation by time resolved imaging Appl. Surf. Sci. 258 9352-4

    [206] [206] Fardel R, Nagel M, Nüesch F, Lippert T and Wokaun A 2010 Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy J. Phys. Chem. C 114 5617-36

    [207] [207] Shaw-Stewart J, Chu B, Lippert T, Maniglio Y, Nagel M, Nüesch F and Wokaun A 2011 Improved laser-induced forward transfer of organic semiconductor thin films by reducing the environmental pressure and controlling the substrate-substrate gap width Appl. Phys. A 105 713-22

    [208] [208] Feinaeugle M, Gregorcic P, Heath D J, Mills B and Eason R W 2017 Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films Appl. Surf. Sci. 396 1231-8

    [209] [209] Rapp L, Constantinescu C, Larmande Y, Diallo A K, Videlot-Ackermann C, Delaporte P and Alloncle A P 2015 Functional multilayered capacitor pixels printed by picosecond laser-induced forward transfer using a smart beam shaping technique Sens. Actuators A 224 111-8

    [210] [210] Rapp L, Constantinescu C, Larmande Y, Alloncle A P and Delaporte P 2014 Smart beam shaping for the deposition of solid polymeric material by laser forward transfer Appl. Phys. A 117 333-9

    [211] [211] Goodfriend N T, Starinskiy S V, Nerushev O A, Bulgakova N M, Bulgakov A V and Campbell E E B 2016 Laser pulse duration dependence of blister formation on back-radiated Ti thin films for BB-LIFT Appl. Phys. A 122 154

    [212] [212] Brown M S, Kattamis N T and Arnold C B 2010 Time-resolved study of polyimide absorption layers for blister-actuated laser-induced forward transfer J. Appl. Phys. 107 083103

    [213] [213] Goodfriend N T et al 2018 Blister-based-laser-induced-forward-transfer: a non-contact, dry laser-based transfer method for nanomaterials Nanotechnology 29 385301

    [214] [214] Bian J, Chen F R, Yang B, Hu J L, Sun N N, Ye D, Duan Y Q, Yin Z P and Huang Y N G 2020 Laser-induced interfacial spallation for controllable and versatile delamination of flexible electronics ACS Appl. Mater. Interfaces 12 54230-40

    [215] [215] Lee J H, Loya P E, Lou J and Thomas E L 2014 Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration Science 346 1092-6

    [216] [216] Dong J L, Song X, Wang Z J, Xiao K L, Liu Y H, Wilde G, Wu X Q and Jiang M Q 2021 Impact resistance of single-layer metallic glass nanofilms to high-velocity micro-particle penetration Extreme Mech. Lett. 44 101258

    [217] [217] Hassani-Gangaraj M, Veysset D, Nelson K A and Schuh C A 2018 Melt-driven erosion in microparticle impact Nat. Commun. 9 5077

    [218] [218] Li R, Li Y H, F L C, Song J Z, Saeidpourazar R, Fang B, Zhong Y, Ferreira P M, Rogers J A and Huang Y G 2012 Axisymmetric thermo-mechanical analysis of laser-driven non-contact transfer printing Int. J. Fract. 176 189-94

    [219] [219] Saeidpourazar R, Li R, Li Y H, Sangid M D, Lu C F, Huang Y G, Rogers J A and Ferreira P M 2012 Laser-driven micro transfer placement of prefabricated microstructures J. Microelectromech. Syst. 21 1049-58

    [220] [220] Luo H Y, Wang C J, Linghu C H, Yu K X, Wang C and Song J Z 2020 Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric microstructured stamp Nat. Sci. Rev. 7 296-304

    [221] [221] Saeedi E, Kim S S, Etzkorn J R, Meldrum D R and Parviz B A 2007 Automation and yield of micron-scale self-assembly processes Proc. 2007 IEEE Int. Conf. on Automation Science and Engineering (Scottsdale, AZ: IEEE)

    [222] [222] Kaltwasser M, Schmidt U, Losing L, Biswas S, Stauden T, Bund A and Jacobs H O 2019 Fluidic self-assembly on electroplated multilayer solder bumps with tailored transformation imprinted melting points Sci. Rep. 9 11325

    [223] [223] Shet S, Revero R D, Booty M R, Fiory A T, Lepselter M P and Ravindra N M 2006 Microassembly techniques: a review Materials Science & Technology 2006 Proc. vol 451 (Cincinnati, Ohio: Materials Science &Technology)

    [224] [224] Bohringer K F, Srinivasan U and Howe R T 2001 Modeling of capillary forces and binding sites for fluidic self-assembly Proc. 14th IEEE Int. Conf. on Micro Electro Mechanical Systems (Interlaken: IEEE) pp 369-74

    [225] [225] Lin C, Tseng F G and Chieng C C 2009 Orientation-specific fluidic self-assembly process based on a capillary effect J. Micromech. Microeng. 19 115020

    [226] [226] Park S C, Biswas S, Fang J, Mozafari M, Stauden T and Jacobs H O 2015 Millimeter thin and rubber-like solid-state lighting modules fabricated using roll-to-roll fluidic self-assembly and lamination Adv. Mater. 27 3661-8

    [227] [227] Durniak M 2018 Methods and systems for parallel assembly, transfer, and bonding of ferromagnetic components U.S. Patent No. 20180261570

    [228] [228] O’Riordan A, Redmond G, Dean T and Pez M 2003 Field-configured self-assembly: manufacturing at the mesoscale Mater. Sci. Eng. C 23 3-6

    [229] [229] O’Riordan A, Delaney P and Redmond G 2004 Field configured assembly: programmed manipulation and self-assembly at the mesoscale Nano Lett. 4 761-5

    [230] [230] Islim M S et al 2017 Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED Photon. Res. 5 A35-A43

    [231] [231] Khalid A M, Cossu G, Corsini R, Choudhury P and Ciaramella E 2012 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation IEEE Photon. J. 4 1465-73

    Tools

    Get Citation

    Copy Citation Text

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Mass transfer techniques for large-scale and high-density microLED arrays[J]. International Journal of Extreme Manufacturing, 2022, 4(4): 42005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Topical Review

    Received: Mar. 8, 2022

    Accepted: --

    Published Online: Mar. 4, 2023

    The Author Email: (yahuang@hust.edu.cn)

    DOI:10.1088/2631-7990/ac92ee

    Topics