Infrared and Laser Engineering, Volume. 51, Issue 9, 20220531(2022)

High-efficiency and high-quality combined polishing method of zinc selenide crystal (invited)

Chao Yang1, Naiwen Zhang1, and Yang Bai2
Author Affiliations
  • 1School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • 2Changchun Institute of Optics, Fine Mechanis and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • show less

    As an excellent infrared crystal material, zinc selenide crystal is widely used in infrared optical systems. In order to improve the processing quality and processing efficiency of zinc selenide crystal, a method combining magnetorheological polishing (MRF) and traditional numerical control polishing (CCOS) technology was proposed, and the magnetic current of zinc selenide crystal was configured through multiple sets of orthogonal experiments. Change the polishing liquid, carry out magnetorheological polishing on a zinc selenide crystal with a diameter of 50 mm, and then perform traditional numerical control polishing on the surface traces after magnetorheological polishing. The positive pressure is in the range of 0.05-0.1 MPa. Uniform polishing after 30 minites, the surface roughness of the zinc selenide crystal was reduced from 3.832 nm to 1.57 nm, and the roughness was significantly improved. The method effectively improves the processing efficiency of aspheric zinc selenide crystals and improves the surface quality after processing, and has important reference value for aspheric ultra-precision processing of zinc selenide crystals.

    Tools

    Get Citation

    Copy Citation Text

    Chao Yang, Naiwen Zhang, Yang Bai. High-efficiency and high-quality combined polishing method of zinc selenide crystal (invited)[J]. Infrared and Laser Engineering, 2022, 51(9): 20220531

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue—Ultra precision manufacture and testing technology of optical aspheric surface

    Received: Aug. 1, 2022

    Accepted: --

    Published Online: Jan. 6, 2023

    The Author Email:

    DOI:10.3788/IRLA20220531

    Topics